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Abstract

There are many families of functions on partitions, such as the shifted symmetric
functions, for which the corresponding q-brackets are quasimodular forms. We extend
these families so that the corresponding q-brackets are quasimodular for a congruence
subgroup. Moreover, we find subspaces of these families for which the q-bracket is a
modular form. These results follow from the properties of Taylor coefficients of strictly
meromorphic quasi-Jacobi forms around rational lattice points.
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1 Introduction
Denote byP the set of all partitions of integers. For a large class of functions f : P → C

the q-bracket, which is defined as the formal power series

〈f 〉q :=
∑

λ∈P f (λ) q|λ|
∑

λ∈P q|λ| ∈ C[[q]],

is a quasimodular form for SL2(Z) (here λ is a partition of size |λ|). It is, therefore, natural
to raise the following two questions:

(I) Given a congruence subgroup� ≤ SL2(Z), is there an (even larger) class of functions
for which the q-bracket is a quasimodular form for � ?

(II) What is the class of functions for which the q-bracket is a modular form (and not
just a quasimodular form)?

In this paper, we explain how to answer these questions by studying a different question
of independent interest:

(III) What is the modular or quasimodular behaviour of the Taylor coefficients of mero-
morphic quasi-Jacobi forms?
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To illustrate how these questions are related, consider the shifted symmetric func-
tions Qk : P → Q, for k ≥ 1 given by

Qk (λ) := βk + 1
(k − 1)!

∞∑

i=1

(
(λi − i + 1

2 )
k−1 − (−i + 1

2 )
k−1), (1)

where
∑∞

k=0 βk zk−1 := ez/2
ez−1 . By the celebrated Bloch–Okounkov theorem, for every

homogeneous polynomial in these functions, the q-bracket is a quasimodular form
for SL2(Z).
More precisely, we have the following. Here, and throughout the paper, we let τ ∈ h,

the complex upper half plane, z ∈ C and write e(x) := e2π ix, q = e(τ ). Given λ ∈ P , write

Wλ(z) :=
∞∑

i=1
e((λi − i + 1

2 )z) (2)

for the generating series of the functionsQk [1,25], which converges for Im(z) < 0. Write
W (z1) · · ·W (zn) for the function λ 	→ Wλ(z1) · · ·Wλ(zn). Then, by the Bloch–Okounkov
theorem, 〈W (z1) · · ·W (zn)〉q is a meromorphic quasi-Jacobi form Fn, defined as follows.

Definition 1.1 For all n ≥ 1, letSn be the symmetric group on n letters and

θ (τ , z) :=
∑

ν∈F
(−1)
ν� e(νz) qν2/2 (F = Z + 1

2 )

the Jacobi theta series. Define the Bloch–Okounkov n-point functions Fn by

Fn(τ , z1, . . . , zn) :=
∑

σ∈Sn

Vn(τ , zσ (1), . . . , zσ (n)),

where the functions Vn are defined recursively by V0(τ ) = 1 and

n∑

m=0

(−1)n−m

(n − m)!
θ (n−m)(τ , z1 + . . . + zm) Vm(τ , z1, . . . , zm) = 0. (3)

Here, θ (r)(τ , z) = ( 1
2π i

∂
∂z
)r
θ (τ , z) for r ≥ 0.

The study of the Taylor coefficients of Fn around rational values of z1, . . . , zn yields an
answer toQuestion I, whereas a detailed description of the (quasi)modular transformation
of theTaylor coefficients of Fn around zi = 0 answersQuestion II. The Fourier coefficients
of the functions Fn were studied in [5], and the Taylor coefficients of certain functions
closely related to holomorphic quasi-Jacobi formswere studied in [4].However, theTaylor
coefficients of Fn or of a more general meromorphic quasi-Jacobi form have not been
studied before.
We now give a short overview of the results in the literature as well as in the present

paper. It should be noted that the answer to the third question can be read independently
from the applications to functions on partitions.
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1.1 The Bloch–Okounkov theorem for congruence subgroups

Given a ∈ Q, define Qk (·, a) : P → Q by Q0(λ, a) := β0(a) and for k ≥ 1 by

Qk (λ, a) := βk (a) + 1
(k − 1)!

∞∑

i=1

(e(a)λi−i (λi − i + 1
2 )

k−1 − e(a)−i (−i + 1
2 )

k−1),

(4)

where
∑

k∈Z βk (a) (2π iz)k−1 := e(z/2)
e(z+a)−1 . We recall e(x) = e2π ix. The main properties

satisfied by these functions are a consequence of the fact that
∑

k≥0
Qk (λ, a) zk−1 = e(− 1

2a)Wλ(z + a),

and that Fn(z1, . . . , zn) = 〈W (z1) · · ·W (zn)〉q is a quasi-Jacobi form. Observe that
Qk (λ, 0) = Qk (λ). Up to a constant, these functions Qk (·, a) have been considered before
in [11] for a = 1

2 and in [10] for all a ∈ Q. It was shown that a suitably adapted q-bracket
of any polynomial in these functions, excluding the function Q1(·, a), is quasimodular
for �1(N ) for some N .
In this work, we will not change the q-bracket, nor exclude any of the functions (4), and

nevertheless prove the following result for the graded algebra �∗(N ), contained in C
P ,

given by

�∗(N ) := Q

[
Qk (·, a) | k ≥ 1, a ∈ {0, 1

N , . . . , N−1
N }

]
, (5)

with the grading given by assigning weight k to Qk (·, a). For example, a basis for the
elements of �∗(2) of (homogeneous) weight 3 is given by

{Q3 , Q3(·, 12 ), Q2Q1 , Q2Q1(·, 12 ), Q2(·, 12 )Q1 , Q2(·, 12 )Q1(·, 12 ),
Q3
1, Q

2
1Q1(·, 12 ), Q1Q1(·, 12 )2, Q1(·, 12 )3}.

Observe that there are no elements of negative weight in �∗(N ).
Given N ≥ 1, write (2, N ) for gcd(2, N ). For N̂ ∈ Z, denotemN̂ = (

N̂ 0
0 1

)
.

Theorem 1.2 Let k ∈ Z, N ≥ 1 and N̂ = (2, N )N. For f ∈ �∗(N ) of weight k, the
q-bracket 〈f 〉q is a quasimodular form of weight k for m−1

N̂ �(N̂ )mN̂ .

Remark Theoccurrence of the groupm−1
N̂ �(N̂ )mN̂ in the theoremcanbe interpreted in at

least two ways. First of all, an equivalent formulation of the theorem is that for f ∈ �∗(N )
of weight k , the series 〈f 〉qN̂ is a quasimodular form of weight k and level N̂ , where
qN̂ := q1/N̂ . Secondly, as �1(N̂ 2) ≤ m−1

N̂ �(N̂ )mN̂ , it follows that 〈f 〉q is a quasimodular
form for �1(N̂ 2).
Moreover, the definition of N̂ indicates that the behaviour ofQk (a) is different when the

numerator of a is divisible by 2. We will see that this can also be explained by the n-point
functions Fn: they are quasi-Jacobi forms for which the index is an element ofMn( 12Z).

The following theorem is a refinement ofTheorem1.2, givingusq-brackets (or quotients
of q-brackets) that are quasimodular forms on�1(N ) rather than only on themuch smaller
groupm−1

N̂ �(N̂ )mN̂ .

Theorem 1.3 Let N ≥ 1. Given ki ∈ Z>0 , ai ∈ 1
N Z for i = 1, . . . , n, denote a = a1 + . . .+

an and Qk (·,a) = Qk1 (·, a1) · · ·Qkn (·, an). Then,
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• If a ∈ Z, then 〈Qk (·,a)〉q is a quasimodular form for �1(N );

• If a /∈ Z, then
〈Qk (·,a)〉q
〈Q1(·, a)〉q is a quasimodular form for �1(N ).

Remark Let a ∈ Q. The function 〈Q1(·, a)〉−1
q , equal to �(a), is a so-called Klein form; see

e.g. [16]. Note 〈Q1(·, a)〉q = 0 for a ∈ Z.

Theorem 1.2 should be compared with the results in [12], where Griffin, Jameson and
Trebat-Leder consider certain functions Q(p)

k in the context of studying p-adic analogues
of the shifted symmetric functions (1). Extending their definition to compositem, we let

Q(m)
k (λ) := Qk (λ) − 1

m

m−1∑

a=0
e
( a
m

)
Qk

(
λ,

2a
m

)
(k,m ≥ 1). (6)

Write �(N ) for the graded Q-algebra generated by the functions Q(m)
k for all m | N . For

primes p, these authors show that the q-bracket of the functions Q(p)
k is quasimodular

for �0(p2) and they suggest that it is likely that products of these functions also have
quasimodular q-brackets for the same group. Slightly more general, one can wonder
whether for f ∈ �(N ) the q-bracket 〈f 〉q is a quasimodular form for �0(N 2). Now, observe
that the functions Q(m)

k are elements of �∗(m). Hence, �(N ) ⊂ �∗(N ). Therefore, for
all odd N Theorem 1.2 implies that q-brackets of elements of �(N ) are quasimodular
for �1(N 2). That these q-brackets are indeed quasimodular for the bigger group �0(N 2)
is the content of the next theorem.

Theorem 1.4 Let N ≥ 1 and k ∈ Z. For all homogeneous f ∈ �(N ) of weight k the
function 〈f 〉q is a quasimodular form of weight k for �0(N 2).

It shouldbenoted that the above theoremsare true ingreater generality. For example, the
so-called hook-length moments introduced in [6], and studied in the context of harmonic
Maass forms for a congruence subgroup in [3], also have natural generalisations obtained
by studying their corresponding n-point functions. Similarly, the moment functions and
their generalisations in [22] can equally well be generalized to congruence subgroups.
Therefore, we will state and prove the above results in Sect. 3.1 in a more general setting
that allows application to the hook-length moments and moment functions.

1.2 When is the q-bracket modular?

To illustrate the main ideas, consider again the Bloch–Okounkov algebra �∗ = �∗(1).
For all k ≥ 0, let hk ∈ �∗ be given by

hk (λ) :=

 k
2 �∑

r=0

Q2(λ)r Qk−2r(λ)
2r (k − r − 3

2 )r r!
((x)n := x(x + 1) · · · (x + n − 1)) .

We show that the function hk satisfies the following three properties:

(i) The difference hk − Qk is divisible by Q2 ;
(ii) The q-bracket 〈hk〉q is a modular form (and not just a quasimodular form);
(iii) For f ∈ �∗ with 〈f 〉q modular and f − Qk divisible by Q2 , we have 〈f 〉q = 〈hk〉q .
Hence, one can think of the difference hk − Qk as a correction term forQk with respect

to the property of being a modular form under the q-bracket. By the third property, this



J-W. M. Ittersum Res Math Sci            (2023) 10:5 Page 5 of 45     5 

correction term is unique up to elements in the kernel of the q-bracket. More generally,
one has the following result. Here, M denotes the algebra of modular forms for SL2(Z)
with rational Fourier coefficients.

Theorem 1.5 For any algebra F of functions on partitions satisfying the conditions in
Sect. 4.1, there exists a computable subspaceM = M(F ) ⊆ F such that

(i) F = M ⊕ Q2F ;
(ii) 〈M〉q ⊆ M;
(iii) 〈Q2F〉q ∩ M = {0}.
The algebra F = �∗ is an example to which the above result applies. In particular, by

using (1.5) inductively, each f ∈ �∗ can uniquely be written as a polynomial in Q2 with
coefficients gi ∈ M, i.e.

f =
∑

i≥0
gi Qi

2 .

As 〈g〉q = 0 if and only if 〈Q2 g〉q = 0 for g ∈ �∗, the following are equivalent:

(a) 〈f 〉q is modular;
(b) 〈f 〉q = 〈g0〉q ;
(c) 〈gi〉q = 0 for all i > 0.

The functions hλ ∈ �∗ defined in [21] form a basis for the spaceM(�∗). Themethod of
proof in this work (i.e. using quasi-Jacobi forms) allowed us to state Theorem 1.5 formany
algebras F , whereas the results in [21] could not easily be generalized to other algebras
than�∗. In Sect. 4, we prove this theorem and apply this result to the algebra�∗ of shifted
symmetric functions, to its extensions to higher levels �∗(N ) and to the aforementioned
algebra of moment functions.

1.3 Quasi-Jacobi forms and their Taylor coefficients

Recall τ ∈ h, the complex upper half plane, z ∈ C and e(x) = e2π ix, q = e(τ ). The
Kronecker–Eisenstein series Ek are given by

Ek (τ , z) :=
∑

m,n∈Z

e 1
(z + mτ + n)k

(k ≥ 1) (7)

Here, the letter ‘e’ indicates we perform the Eisenstein summation procedure, given by
∑e

m,n∈Z := limM→∞
∑M

m=−M
(
limN→∞

∑N
n=−N

)
. Note this summation procedure is

only important for k = 1 and k = 2, as for k ≥ 3 the series converges absolutely.
Do these series Ek , the Jacobi theta function θ and its derivatives, and the Bloch–

Okounkov n-points functions Fn have a common property?
To answer this question, observe that the first two functions can be interpreted as

generating functions of the Eisenstein series ek , given by1

ek (τ ) :=
∑

(m,n)∈Z2

(m,n) �=(0,0)

′ 1
(mτ + n)k

(k ≥ 2).

1Here, we follow the notation in [23], which goes back to Eisenstein. Often, ek is denoted by Gk .
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Namely,

�(τ , z) := θ (τ , z)
θ ′(τ , 0)

= 2π iz exp
(
−
∑

m≥1
e2m(τ )
2m

z2m
)
,

Ek (τ , z) = 1
zk

+ (−1)k
∑

m≥k/2

(
2m − 1
k − 1

)

e2m(τ ) z2m−k .

In particular, the Taylor (or Laurent) coefficients around z = 0 of these functions are
polynomials in Eisenstein series, hence quasimodular forms—a property which is shared
by the stronger notion of a Jacobi form. Just as e2 transforms as a quasimodular form,
so do θ (r) and Fn transform as quasi-Jacobi forms. Our answer to the question is that all
these functions are quasi-Jacobi forms, introduced in Sect. 2.4.
Quasi-Jacobi forms transform comparable to quasimodular forms, as we explain now.

There is a slash action (see Definition 2.2) on all functions ϕ : h × C
n → C for all γ ∈

SL2(Z) and for all X ∈ Mn,2(Q) (so actually for the action of their semidirect product
SL2(Z) � Mn,2(Q)). In case ϕ is a quasi-Jacobi form of weight k and index M, there exist
quasi-Jacobi forms ϕi,j , indexed by a finite subset ofZ≥0×Z

n≥0 , such that for all γ = ( a b
c d

)

and X = (λ,μ) ∈ Mn,2(Z) one has

(ϕ|k,M γ )(τ , z1, . . . , zn) =
∑

i,j
ϕi,j(τ , z1, . . . , zn)

( c
cτ + d

)i+|j| zj11 · · · zjnn
(2π i)i

, (8)

(ϕ|MX)(τ , z1, . . . , zn) =
∑

j
ϕ0,j(τ , z1, . . . , zn) (−λ1)j1 · · · (−λn)jn (9)

togetherwith similar formulas for eachϕi,j|k,M γ andϕi,j|MX . Jacobi formsarequasi-Jacobi
forms for which the right-hand side in both equations above equals ϕ.
The quasi-Jacobi forms ϕ we study are strictly meromorphic, i.e. meromorphic such that

if z ∈ R
nτ + R

n is a pole of ϕ(τ , ·) for some τ ∈ h, it is a pole for almost all τ ∈ h. This
is a new notion we introduce in this work; see Sect. 2.1. The Weierstrass ℘-function is
an example of a strictly meromorphic Jacobi form, but its inverse is not. Also, Ek ,�−1

and Fn are strictly meromorphic. If the number of elliptic variables n satisfies n = 1, this
condition is equivalent to the statement that all poles of ϕ are torsion points z ∈ Qτ + Q.
This is crucial to obtain mock modular forms as Fourier coefficients of meromorphic
Jacobi forms (see [8,26]). For n > 1, the Jacobi transformation properties of ϕ imply a
more complicated restriction on the positions of the poles. By studying the orbits of the
action of SL2(Z) on (R2)n we prove the following result.

Theorem 1.6 Let ϕ be a strictly meromorphic quasi-Jacobi form and τ ∈ h. Then, all
poles z of ϕ(τ , ·) lie in finite union of rational hyperplanes

s1z1 + . . . + snzn ∈ uτ + v

with s1, . . . , sn ∈ Z and u, v ∈ Q/Z.

In this work, we determine conditions on the Taylor coefficients (or rather Laurent
coefficients in case we are expanding around a pole) of a meromorphic function ϕ : h ×
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C
n → C for it to be a (quasi-)Jacobi form. This is the technical result we need to answer

Question I and II. In one direction, by the work of Eichler and Zagier [9], it is known that
for a Jacobi form theTaylor coefficients around rational lattice points are quasimodular, or
equivalently that certain linear combinations ξX� of derivatives of these Taylor coefficients
are modular. For example, � is a weak Jacobi form, hence it satisfies

(�|X |γ )(τ , z) ∝ (�|Xγ )(τ , z)

for all X = (λ,μ) ∈ M1,2(Q) and γ ∈ SL2(Z), where the implicit multiplicative constant is
a root of unity depending on X and γ . Hence, it follows that the Taylor coefficients of �

around z = λτ + μ (after multiplying with a certain power of q) are quasimodular for
some subgroup �X of SL2(Z) consisting of γ for which Xγ − X ∈ M1,2(Z) (see 18). In
contrast, the weak quasi-Jacobi form �′(τ , z) = θ ′(τ ,z)

θ ′(τ ,0) transforms as

(�′|X |γ )(τ , z) ∝
(�′|Xγ )(τ , z) + cz

cτ + d
(�|Xγ )(τ , z) + λ (�|Xγ )(τ , z) − λ

cτ + d
(�|Xγ )(τ , z).

Therefore, the Taylor coefficients of �′ + λ� around z = λτ + μ, rather than of �′,
give rise to quasimodular forms for �X . We write gX� (�′) for the �th Taylor coefficient
of �′ + λ�. In Definition 2.29 we extend this notation by writing gX� (ϕ) for the ‘correct’
Taylor coefficient of a quasi-Jacobi form ϕ. Moreover, in (20) we define ξXm(ϕ) to be a
certain combination of the derivatives of gX� (ϕ).
The main result on Taylor coefficients of quasi-Jacobi forms is given by Theorem 2.35

and summarized in the following result. For simplicity, we assume that s = (s1, . . . , sn) in
Theorem 1.6 is always a standard basis vector, e.g. we allow℘(z1)℘(z2 + 1

2 ), but we do not
allow ℘(z1 − z2).

Theorem 1.7 Let ϕ be a strictly meromorphic quasi-Jacobi form of weight k and index M
whose poles z lie on a finite collection of hyperplanes of the form zj ∈ uτ + v with j ∈
{1, . . . , n} and u, v ∈ Q/Z. Then

(i) for all X ∈ Mn,2(Q) and � ∈ Z
n the ‘Taylor coefficients’ gX� (ϕ) are quasimodular

forms of weight k + �1 + . . . + �n for the group �X and satisfy the functional Eqs. (21)
and (22).

(ii) for all X ∈ Mn,2(Q) andm ∈ Z
n the functions ξXm(ϕ) are modular forms of weight k +

m1 + . . . + mn for �X and satisfy the functional Eq. (21).

Definition 2.29 and Eq. (20) (defining gX� (ϕ) and ξXm(ϕ)) use the functions ϕi,j in (8) and (9),
which are uniquely determined by the quasi-Jacobi form ϕ. The results of Sect. 2.7 also
show that the four collections of functions {ϕ}, {ϕi,j}, {gX� } and {ξXm} determine each other
in a computable way, and give explicit conditions on the collections {ϕi,j}, {gX� } and {ξXm}
that imply that they arise from a quasi-Jacobi form.
In Sect. 2, we introduce strictlymeromorphic quasi-Jacobi forms andproveTheorem1.6

and Theorem 1.7. The quasimodular transformation of the Taylor coefficients of Fn will
then imply the results on the Bloch–Okounkov theorem for congruence subgroups in
Sect. 3. Moreover, in Sect. 4, we see that “pulling back” the functions ξXm under the q-
bracket leads to the construction of the functions hm for which the q-bracket is modular.
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2 Quasi-Jacobi forms
The definition of a Jacobi form in [9] has been generalized in many ways. We provide
a generalization that incorporates several elliptic variables, characters, weakly holomor-
phic and meromorphic functions, and quasi-Jacobi forms [2,19,20]. In particular, the
normalized Jacobi theta function �, the Kronecker–Eisenstein series Ek and the Bloch–
Okounkov n-point functions Fn from the introduction will be examples throughout this
paper.
For τ ∈ h, the complex upper half plane, we write Lτ = Zτ + Z. As is customary, we

often omit the dependence on the modular variable τ in any type of Jacobi form, e.g. we
write �(z) for �(τ , z). We write a = (a1, . . . , an) for a vector of elements and we write |a|
fora1+. . .+an .For vectorsa andb, wewriteab to denote

∏
i a

bi
i . Also, givenX ∈ Mn,2(R),

we denote the rows of X by λ and μ, i.e. X = (λ,μ). Moreover, for γ ∈ SL2(Z), we write
γ = ( a b

c d
)
and we write λγ and μγ for the rows of Xγ , i.e. Xγ = (λγ ,μγ ).

2.1 Strictly meromorphic Jacobi forms

The definition of a strictly meromorphic Jacobi form is subtle, excluding many meromor-
phic functions transforming as Jacobi forms. For example, the j-invariant, the reciprocal
of an Eisenstein series ek , or℘/�, where℘ is theWeierstrass℘-function and� the mod-
ular discriminant, are all non-examples of strictly meromorphic Jacobi forms. Namely,
although a strictly meromorphic Jacobi form is meromorphic we want its Taylor coef-
ficients in the elliptic variables to be holomorphic (rather than weakly holomorphic or
meromorphic) quasimodular forms. But with this not everything has been said, the defi-
nition is even stricter: we require the poles of ϕ to be “constant” in the modular variable τ .
Consider, for example, the Weierstrass ℘-function, which is an example of a strictly
meromorphic Jacobi form. For every fixed z ∈ C (e.g. z = i) the function ℘(τ , z) is a
meromorphic function of τ , as ℘(τ , z) has a pole whenever τ is such that z ∈ Lτ (e.g.
τ = z = i). However, for λ,μ ∈ R, the function ℘(τ , λτ + μ) is holomorphic, unless both
λ ∈ Z and μ ∈ Z. That is, all poles of ℘(τ , z) are given by z ∈ Lτ . On the contrary, we
will see that ℘−1 is not a strictly meromorphic Jacobi form, as the poles of ℘−1 are not
“constant” in τ .
Before introducing strictly meromorphic Jacobi forms, we first recall the Jacobi group

and its action on (meromorphic) functions.

Definition 2.1 For all n ∈ N, the (discrete) Jacobi group �J
n of rank n is defined as the

semi-direct product �J
n := SL2(Z) � Mn,2(Z) with respect to the right action of SL2(Z)

onMn,2(Z).

That is, an element of �J
n is a pair (γ , X) with γ ∈ SL2(Z), X ∈ Mn,2(Z) and satisfies the

group law (γ , X)(γ ′, X ′) = (γ γ ′, X + Xγ ′).
LetM ∈ Mn(Q). We often make use of the associated bilinear form BM , given by2

BM(z, z′) = zMz′t .

Definition 2.2 Given a meromorphic function ϕ : h × C
n → C, k ∈ Z andM ∈ Mn(Q),

for all (γ , X) ∈ �J
n we let

2It is standard to let QM (z) = 1
2 zMzt be the associated quadratic form. We refrain from using this notation to avoid a

clash with the shifted symmetric functions denoted by Qk .
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(i) (ϕ|k,Mγ )(τ , z) := (cτ + d)−k e
(−c BM(z, z)

cτ + d

)
ϕ
(aτ + b
cτ + d

,
z

cτ + d

)
;

(ii) (ϕ|M X)(τ , z) := e(BM(λ + μ,λ + μ)) e(BM(λ,λτ + 2z))ϕ(τ , z + λτ + μ).

(Recall that we write γ = ( a b
c d

)
and X = (λ,μ).) Moreover, we let ϕ|k,M(γ , X) :=

(ϕ|k,Mγ )|MX , often omitting k andM from the notation.

Remark Given k ∈ Z and M ∈ Mn(Q), the slash operator defines an action of �J
n of

weight k and index M on the space of all meromorphic functions ϕ : h × C
n → C.

GivenM ∈ Mn(Q), for X, X ′ ∈ Mn,2(Q), we let

ρ(X) := e(B(λ,λ) − B(λ,μ) + B(μ,μ)), ζX,X ′ := e(B(λ′,μ) − B(λ,μ′)), (10)

where we wrote B = BM for the bilinear form associated toM. Observe that

ρ(−X) = ρ(X)−1 and ζX ′ ,X = ζ−1
X,X ′ = ζ−X,X ′ = ζX,−X ′ .

By extending the slash action to the real Jacobi group , generalizing [9, Theorem 1.4] to
several variables and half-integral index, we obtain the following functional equations.

Proposition 2.3 Given a meromorphic function ϕ : h× C
n → C, k ∈ Z andM ∈ Mn(Q),

for all X, X ′ ∈ Mn,2(R) and γ ∈ SL2(Z) one has

ρ(−X)ϕ|X |γ = ρ(−Xγ )ϕ|γ |Xγ

and

ρ(−X)ρ(−X ′) ζX ′ ,X ϕ|X |X ′ = ρ(−X ′)ρ(−X) ζX,X ′ ϕ|X ′|X
= ρ(−X − X ′)ϕ|(X + X ′).

Classical modular forms are defined as the invariants for a certain group action of the
space Hol0(h) of holomorphic functions in h satisfying a certain growth condition (having
at most polynomial growth near the boundary).

Definition 2.4 Let Hol0(h) be the ring of holomorphic functions ϕ of moderate growth
on h, i.e. for all C > 0, γ ∈ SL2(Z) and x ∈ R one has ϕ(γ (x + iy)) = O(eCy) as y → ∞
(where γ acts on h by Möbius transformations).

With the remarks at the beginning of this section in mind, we now define strictly mero-
morphic Jacobi forms. A final subtlety in the definition below is coming from the fact
that a meromorphic function in two or more variables always has points of indeterminacy
(think of x/y near the origin, whose limiting value depends on the angle of approach).
Points of indeterminacy are not “generic”, and we exclude these points when we say, for
instance, that a certain function ϕ(τ , z) has its poles precisely on certain hyperplanes for
all generic τ ∈ h.

Definition 2.5 Given n ≥ 0, denote by Mern the space of meromorphic functions
ϕ : h × C

n → C such that for all λ,μ ∈ R
n either z = λτ + μ is a pole of ϕ(τ , ·) for

all generic τ ∈ h or the function τ 	→ ϕ(τ ,λτ + μ) belongs to Hol0(h). Moreover, given
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M ∈ Mn(Q), denote by MerMn the subspace of ϕ ∈ Mern for which ϕ|MX ∈ Mern for all
X ∈ Mn,2(Q). Let Holn and HolMn be the subspace in Mern and MerMn , respectively, of
holomorphic functions.

Definition 2.6 Let k ∈ Z and M ∈ Mn(Q). A holomorphic, weak, or a strictly meromor-
phic Jacobi form of weight k , indexM and rank n for the Jacobi group �J

n is a function ϕ in
HolMn , Holn orMerMn , respectively, that is invariant under the action of �J

n of weight k and
indexM (i.e. ϕ|k,Mg = ϕ for all g ∈ �J

n). We write Jholk,M, Jweakk,M and J smk,M for the vector spaces
of holomorphic, weak, and strictly meromorphic Jacobi forms of weight k and index M
(often omitting the indices).

Remark LetM = (mij) ∈ Mn(Q). Any space of Jacobi forms is trivial whenever 2BM(z, z)
is a non-integral quadratic form, or, equivalently, when mij /∈ 1

4Z or mii /∈ 1
2Z for some

i �= j. Namely, let ϕ be a Jacobi form and let τ ∈ h be fixed. If ϕ is nonzero of rank 1, write
M = (m) for its index. It follows from the elliptic transformation law (Definition 2.2(ii))
that the number of zeros minus the number of poles of z 	→ ϕ(τ , z) in any fundamental
domain for the action of Lτ on C is exactly 2m. For Jacobi forms of higher rank the
integrability of 2BM(z, z) follows by noting that for fixed μ2, . . . ,μn ∈ C, functions of
the form z 	→ ϕ(τ , z,μ2,μ3, . . . ,μn) and z 	→ ϕ(τ , z, z,μ3, . . . ,μn) still satisfy the elliptic
transformation law.

A holomorphic Jacobi form of rank 0 is just a modular form. More interestingly, the
Kronecker–Eisenstein series (7) are examples of a strictly meromorphic Jacobi form of
index (0), with expansions given by

Ek (τ , z) = (−1)k

(k − 1)!
Dk−2
y

(∑

m∈Z

yqm

(1 − yqm)2

) (
y = e(z), Dy = y

∂

∂y

)
.

Closely related are the Weierstrass ℘-function and its derivative, that is, ℘ = E2 − e2
and ℘′ = −2E3. By [9, Theorem 9.4], it follows that the algebra of weak Jacobi forms is
given by

Jweak = C[A, B, C, e4 , e6]/(C2 − 4AB3 + 60e4A3B + 140e6A4),

where A, B and C are equal to �2,℘ �2 and ℘′ �4, respectively. Note that the relation
C2 = 4AB3 − 60e4A3B − 140e6A4 comes from the differential equation satisfied by the
Weierstrass ℘-function.
The following result, yielding an algebraic proof and extending [19, Proposition 2.8]3,

gives all strictly meromorphic Jacobi forms of rank 1 with only poles at the lattice points.
The corresponding algebra is free, as the relation between ℘3 and (℘′)2 can be used to
express e6 in terms of the generators. As usual, wewritem (instead of thematrixM = (m))
for the index of a Jacobi form of rank 1.

Proposition 2.7 Let ϕ ∈ J sm be of indexm ∈ 1
2Z≥0 such that all poles (τ , z) of ϕ satisfy z ∈

Lτ . Then,

ϕ ∈ C[℘,℘′, e4]�2m.

3The author states the result for Jacobi forms, which obviously is not meant to be holomorphic Jacobi forms. Although
not stated explicitly, we assume he refers to strictly meromorphic Jacobi forms with poles only at lattice points.
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Proof First, we show that f = ϕ �−2m ∈ J sm is a strictly meromorphic Jacobi form of
index 0with all poles (τ , z) satisfying z ∈ Lτ . This follows from the claim that�−1 ∈ J sm1,−1/2
and that all the poles of �−1 are at the lattice points. To prove this claim, note that by the
Jacobi triple product

� = (y1/2 − y−1/2)
∏

n≥1

(1 − yqn)(1 − y−1qn)
(1 − qn)2

.

It follows that� is a weak Jacobi formwith all zeros at the lattice points z ∈ Lτ . Moreover,
for all X ∈ Mn,2(Q) the function �|X does not vanish at infinity, from which the claim
follows.
From now on, assume that ϕ is of index 0, i.e. that ϕ is an elliptic function. Write ϕ =

ϕ0 + ϕ1 with ϕ0 and ϕ1 the even and odd part of ϕ, respectively. For u, v ∈ Rτ + R,
write u ∼ v if u ≡ v or u ≡ −v mod Lτ . Then, for i = 0, 1 one has

ϕi = (℘′)i
∏

j
(℘ − ℘(uj(τ )))mj ,

wheremj ∈ Z and uj(τ ) are representatives with respect to the above equivalence relation
for the zeros and poles of ϕi outside Lτ . As both ϕ0 and ϕ1 do not admit poles outside the
lattice, it follows thatmj > 0. Hence, ϕ is a polynomial in ℘ and ℘′ where the coefficients
are polynomials in the functions ℘(uj(τ )). By the modular transformation every such
coefficient is a modular form for SL2(Z), hence an element of C[℘,℘′, e4].

Remark Although the above result and many examples of strictly meromorphic Jacobi
forms in the literature have only poles at z ∈ Lτ , one easily constructs a strictly meromor-
phic Jacobi forms with poles at different places. Namely, if ϕ is a Jacobi form with all poles
at z ∈ Lτ , then

ϕ(τ , z + 1
2 ) + ϕ(τ , z + 1

2τ ) + ϕ(τ , z + 1
2τ + 1

2 )

is a Jacobi form for the same group, but now with the poles at 1
2 ,

1
2 + 1

2τ and 1
2τ modulo

the lattice Lτ .

2.2 Poles of Jacobi forms

In contrast to the space of (weakly) holomorphic Jacobi forms, the space of strictly mero-
morphic Jacobi forms of given weight and index is not finite-dimensional. However, the
latter space is not far from being finite-dimensional. First of all, in contrast to the space of
all meromorphic functions, the space of strictly meromorphic Jacobi forms is not a field.
Moreover, the poles lie in a finite number of hyperplanes and after fixing finitely many
such hyperplanes to contain the poles, the vector space of strictly meromorphic Jacobi
forms of given weight and index is finite-dimensional, as we will explain in this section.
Given a meromorphic Jacobi form ϕ of rank n, we write

Pϕ = {(τ , z) ∈ h × C
n | ϕ is not holomorphic at (τ , z)}

for the set of poles as well as points of indeterminacy of ϕ. We identify two points of Pϕ

if they have same image under the projection h × C
n � Mn,2(R) given by (τ ,λτ + μ) 	→

(λ,μ). That is, we define an equivalence relation on Pϕ by saying that (τ , z) ∼ (τ ′, z′)
whenever, after writing z = λτ + μ and z′ = λ′τ + μ′ with λ,λ′,μ,μ′ ∈ R

n, one
has λ = λ′ and μ = μ′. We identify the quotient set Qϕ with a subset of Mn,2(R) by
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identifying a point of Pϕ with its image under the projection. From the definition of a
strictly meromorphic Jacobi form, we obtain the factorisation h × Qϕ � Pϕ of Pϕ , given
by (τ , (λ,μ)) 	→ (τ ,λτ + μ). Note that Qϕ is invariant under translation byMn,2(Z).
As an example of how the definition works, we first prove a simple consequence:

Proposition 2.8 Let ϕ ∈ J sm. If 1
ϕ
is also a strictly meromorphic Jacobi form, then ϕ is

constant.

Proof Let X = (λ,μ) ∈ M1,2(R) be given with X /∈ Qϕ and X /∈ Q1/ϕ . Write z(τ ) =
X(τ , 1)t = λτ + μ. Then both ϕ(τ , z(τ )) and 1

ϕ(τ ,z(τ )) are holomorphic as a function
of τ ∈ h. Hence, as a function of τ ∈ h, both ϕ(τ , z(τ )) and 1

ϕ(τ ,z(τ )) do not admit any
zeros. Similarly, it follows that both ϕ(τ , z(τ )) and 1

ϕ(τ ,z(τ )) are holomorphic (as a function
of τ ∈ h) at the cusps. Hence, both functions do not admit any zero at the cusps. In other
words, ϕ(τ , z(τ )) does not admit any zeros and poles on a compact set. So, ϕ(τ , z(τ )) is
constant as a function of τ . As this holds for almost all X ∈ Mn,2(R), we conclude that ϕ

is globally constant.

The following result, which is crucial for the sequel, tells us that the image of Qϕ in
the torusMn,2(R/Z) consists of finitely many hyperplanes given by linear equations with
rational coefficients. In other words, the following result strengthens Theorem 1.6 (the
fact that the second conclusion is also true for quasi-Jacobi forms, follows immediately
after introducing such functions (see Corollary 2.19).

Theorem 2.9 Let ϕ ∈ J sm, and let Pϕ � h × Qϕ be the set of non-holomorphic points as
above. Then, we have:

(i) If X ∈ Qϕ , then Xγ ∈ Qϕ for all γ ∈ SL2(Z).
(ii) There exist finitely many hyperplanes of the form

s · X ∈ (u, v)

with s ∈ Z
n primitive (i.e. with coprime entries) and u, v ∈ Q/Z, such that X ∈ Qϕ

precisely if X lies on such a hyperplane.

Proof (2.9): LetX ∈ Qϕ and γ = ( a b
c d

) ∈ SL2(Z) be given.Write x(τ ) = X(τ , 1)t = λτ+μ.
Note that ϕ has a pole at x(τ ) for generic τ ∈ h. By the modular transformation behaviour
of ϕ under γ −1, it follows that

ϕ
( dτ − b

−cτ + a
,

z
−cτ + a

)

also has a pole at z = x(τ ) for generic τ ∈ h. Now, let τ ′ = γ −1τ . We find

x(τ )
−cτ + d

= x(γ τ ′)
−cγ τ ′ + a

= λγ τ ′ + μ

−cγ τ ′ + a
= λ(aτ ′ + b) + μ(cτ ′ + d) = (λ,μ)γ (τ ′, 1)t .

Hence, the function ϕ (τ , z) has a pole at z = Xγ (τ , 1)t for generic τ ∈ h.
(2.9): Let X = (λ,μ) ∈ Qϕ . The set Qϕ is closed and (n − 1)-dimensional; hence, there

is a Y ∈ Mn,2(R) with Y /∈ Qϕ and which is bounded away from Xγ .
First, we treat the case that the rank n is 1. Then, by Lemma 2.12, proven in the next

section, the fact that Y is bounded away from Xγ for all γ ∈ SL2(Z) implies that both λ

and μ are rational. Therefore, we can take s = 1 and (u, v) = (λ,μ) mod Z
2.
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Next, let n ≥ 2. By an approximation property proven in the next section (see Propo-
sition 2.15), the fact that Y is bounded away from X implies that there are non-trivial
s ∈ Z

n, t ∈ Z with s · λ = t. (In fact, the result states that if Y is bounded away from X
then for all α,β ∈ Z, there exist non-trivial s ∈ Z

n, t ∈ Z with s · (αλ + βμ) = t. We
choose α = 1,β = 0.) Note that the value of s and t is a function of X , i.e. for all elements
X ∈ Qϕ there exists an element (s, t) ∈ Rel giving the relation, where

Rel := (Zn\{0}) × Z.

Let τ ∈ h be given and identify Mn,2(R) with C
n via X 	→ x = X(τ , 1)t . For almost all

X ∈ Qϕ , the conditions of the implicit function theorem for the function ϕ are satisfied.
In this case, there exists an open set U ⊂ C

n−1 containing 0, an open neighbourhood
V ⊂ C

n of x, and a holomorphic function g : U → V , such that z ∈ V is a pole of ϕ

precisely if z lies in the image of g . Consider the isomorphism (πτ , ρτ ) : C � Rτ +R. Let gi
be the ith component function of g , which takes values inRτ +R under this isomorphism.
For example, taking τ = i, we find πi(gi) = Im(gi) and ρi(gi) = Re(gi). For every u ∈ U we
find a relation of the form

n∑

i=1
si πτ (gi(u)) = t, (11)

where (s, t) ∈ Rel, possibly depending on the choice ofu.Wenow show thatwe can choose
(s, t) ∈ Rel such that (11) holds for all u ∈ U . Recall that the set of zeros of a non-constant
real-analytic function hasmeasure 0. As πτ (gi) is a real-analytic function, either (11) holds
for all u ∈ U , or it holds for a real subspace of U of measure 0. Now, note that Rel is a
countable set, whereas countably many subspaces of measure 0 do not cover U . Hence,
we find a relation (11) which holds for all u ∈ U . By the Cauchy–Riemann equations for
the holomorphic functions gi we can ‘upgrade’ this relation to the statement that s ·z takes
a constant value uτ + v in Rτ + R for all z ∈ g(U ). Without loss of generality we assume
that gcd(s1, . . . , sn) = 1; if not, we scale s, u and v appropriately.
Now, by the Weierstrass preparation theorem, locally around x the set of poles is given

by k branches coming together, where each branch is an (n− 1)-dimensional space given
by the zeros of a holomorphic function and k equals themultiplicity of the pole at x (see [7,
Lemma 6.1] for the same argument in a different setting). We know that almost all (hence
all) the elements in such a branch satisfy s ·x = uτ +v. Write T for (Rτ +R)/(Zτ +Z). By
analytically extending such a local branch, we find that all solutions z ∈ T of s ·z = uτ +v
are poles of ϕ(τ , ·) as long as they are in the same connected component as x. Because
gcd(s1, . . . , sn) = 1 the solution space of s · z = uτ + v in T is connected, so that all
solutions z of s · z ≡ uτ + v mod Lτ are poles of ϕ(τ , ·) for generic τ ∈ h. Moreover,
(u, v) ∈ Q

2, as the image of the poles of ϕ inT is not dense, but rather (n−1)-dimensional.
Note that z 	→ ϕ(z)�(s · z − uτ − v) has exactly the same poles as z 	→ ϕ(z) except

for the poles which are zeros of s · z ≡ uτ + v mod Lτ . Hence, the statement now follows
inductively. By compactness of T it follows that one can restrict to only finitely many
linear functions.

Remark Note that if s·X ∈ (u, v) is oneof the equationsdeterminingQϕ , then s·X = (u′, v′)
is another equation whenever (u, v)γ = (u′, v′) for some γ ∈ SL2(Z).
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Corollary 2.10 The vector space of strictly meromorphic Jacobi forms of some weight k,
index M and poles (τ , z) only in finitely many fixed hyperplanes of the form

s · z ∈ uτ + v (s ∈ Z
n, u, v ∈ Q/Z)

is finite-dimensional.

Proof Recall that the �th Taylor coefficient of a Jacobi form is a quasimodular form of
weight k + |�|. Therefore, the multiplicity at a pole is bounded by the weight k . Now,
writing si · z ∈ uiτ − vi + Lτ for the hyperplanes in the statement, indexed by i ∈ I , we
find that the function ϕ(z)∏i∈I �(si · z−uiτ − vi)k is a weak Jacobi form with weight and
index uniquely determined by ϕ and the si. The statement now follows directly from the
finite-dimensionality of the space of weak Jacobi forms of fixed weight and index.

2.3 An approximation lemma

In this section, we prove the approximation properties that were used in the proof of
Proposition 2.9(ii). That is, we prove a result indicating when for given X, Y ∈ Mn,2(R),
there exists a γ ∈ SL2(Z) such that Xγ lies arbitrarily close to Y . For Z ∈ Mn,m(R),
write ‖Z‖ for the distance to the closest integer matrix, i.e.

‖Z‖ := max
i,j

min
�∈Z |Zi,j − �|.

Definition 2.11 Given X, Y ∈ Mn,2(R), we say Y is SL2(Z)-approximable by X if

∀ε > 0 ∃γ ∈ SL2(Z) : ‖Xγ − Y ‖ < ε.

We are interested in conditions onX and Y such that Y is SL2(Z)-approximable byX . For
example, in case n = 1 a sufficient (but not necessary) condition is given by X /∈ M1,2(Q):

Lemma 2.12 Given X, Y ∈ M1,2(R) and X /∈ M1,2(Q), then

∀ε > 0 ∃γ ∈ SL2(Z) : ‖Xγ − Y ‖ < ε.

Proof Write X = (λ,μ). First of all, if λ/μ is irrational, then the stronger statement that
the orbit of (λ,μ) under SL2(Z) lies dense in R

2 holds (see e.g. [18]). Also, if μ = 0 the
orbit of (λ,μ) lies dense in R

2/Z
2 whenever λ is irrational.

From now on, we assume both λ and μ are irrational, but with rational ratio. Then,

(λ,μ)
(
a b
c d

)

= μ

(
a λ

μ
+ c

b λ
μ

+ d

)

.

Note that the matrix on the right-hand side parametrizes N−1 (Z ∧ Z), where N is the
denominator of λ/μ and Z ∧ Z denotes the subset of Z

2 consisting of coprime integers.
As μ is irrational, we conclude that the orbit of (λ,μ) under SL2(Z) lies dense in R

2/Z
2.

Hence, if λ or μ is irrational, then SL2(Z)-approximability of Y by X holds.

If we replace SL2(Z) by Mn,m(Z), there is a renowned criterion for when X approxi-
mates Y [15].
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Theorem 2.13 (Kronecker’s theoremonDiophantineapproximation) ForX, Y ∈ Mn,m(R)
it holds that

∀ε > 0 ∃γ ∈ Mm(Z) : ‖Xγ − Y ‖ < ε

if and only if

s ∈ Z
n with s · X ∈ Z

m implies s · Y ∈ Z
m. (12)

This is almost the result we are looking for, except that we want to replace M2(Z)
by SL2(Z). If we were instead considering the action of SLn onMn,2(R), the results of, for
example, [17] would suffice. The action of SL2(Z) onM1,2(R) is dealt with in, for example,
[13,18]. The latter work already hints at the fact that the condition (12) should be altered
if one replaces M2(Z) by SL2(Z). Namely, if λ,μ are coprime integers, then (λ,μ)γ is a
vector of coprime integers for all γ ∈ SL2(Z). Hence, if X = ( 12 ,

1
3 ), then (0, 0) is not in

the orbit of X for SL2(Z), although it is in the orbit of X for M2(Z). Observe that in this
case the smallest s ∈ Z≥1 for which s · (0, 0) ∈ Z

2 does not equal the smallest s ∈ Z≥1 for
which s · X ∈ Z (i.e. 1 �= 6), which is formalized in (14).
For almost all X = (λ,μ) ∈ Mn,2(R) we have that 1, λ1, . . . , λn,μ1, . . . ,μn are linearly

independent over Q. In this case, and, more generally, for generic X defined below, we
show one has a Diophantine approximation theorem for SL2(Z).

Definition 2.14 Given X ∈ Mn,2(R), we say X is generic when there are α,β ∈ Z such
that for all s ∈ Z

n with s �= 0 one has

s · (αλ + βμ) /∈ Z.

For s ∈ Z
n and X ∈ Mn,2(R) with s �= 0 and s · Xt ∈ Z

2, we write

(s, s · X) := max
{
N ∈ Z :

s
N

∈ Z
n,

s · X
N

∈ Z
2
}

for the greatest common divisor of the entries of s and s · X .

Proposition 2.15 (Partial result on Diophantine approximation for SL2(Z)) Let X, Y ∈
Mn,2(R). Then, if X is generic one has

∀ε > 0 ∃γ ∈ SL2(Z) : ‖Xγ − Y ‖ < ε. (13)

Conversely, if (13) holds, then for all non-trivial s ∈ Z
n for which s · X ∈ Z

2 one has that
s · Y ∈ Z

2 and

(s, s · X) = (s, s · Y ). (14)

Proof Suppose that s ∈ Z
n is such that s ·X ∈ Z

2 (as in the second part of the statement).
Observe that s · (Xγ ) ∈ Z

2 for all γ ∈ SL2(Z). Hence, for any γ ∈ SL2(Z) one has

‖Xγ − Y ‖ ≥ 1
n

‖s · (Xγ ) − s · Y ‖ = 1
n

‖s · Y ‖.

Therefore, if (13) holds, then for all s ∈ Z
n with s · X ∈ Z

2 one has s · Y ∈ Z
2.
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Next, suppose s ∈ Z
n such that s · X, s · Y ∈ Z

2 and s �= 0. Write N = (s, s · Y ) and
s′ = N−1s. Suppose s′ · (Xγ ) /∈ Z

2 for all γ ∈ SL2(Z), i.e. s′ · (Xγ ) ∈ (N−1
Z
2)\Z

2.
Therefore, if (13) holds, for any γ ∈ SL2(Z) one has

‖Xγ − Y ‖ ≥ 1
n

‖s′ · (Xγ ) − s′ · Y ‖ = 1
n

‖s′ · (Xγ )‖ ≥ 1
Nn

,

which is a contradiction. Therefore, we have that s′ · (Xγ ) ∈ Z
2 for some γ ∈ SL2(Z).

This implies that s′ ·X ∈ Z
2. Hence, (s, s ·Y ) ≤ (s, s ·X). Analogously, the other inequality

(s, s · X) ≤ (s, s · Y ) holds. We conclude that (s, s · X) = (s, s · Y ).
Next, let X = (λ,μ) be generic, i.e. let α,β ∈ Z be such that for all non-trivial s ∈ Z

n

we have s · (αλ + βμ) /∈ Z. Assume without loss of generality that α and β are coprime.
Choose γ0 ∈ SL2(Z) such that its first column is given by (α,β)t and write Xγ0 = (λ̃, μ̃).
By construction, λ̃ = αλ + βμ. Hence, by Kronecker’s theorem we find infinitely many
b ∈ Z such that

‖bλ̃ + μ̃ − ξ‖ < ε, (15)

wherewedenotedY = (ν, ξ). Suppose for all suchb there exists anon-trivial s(b) ∈ Z
n such

that s(b) · (bλ̃+ μ̃) ∈ Z. Note that there exist finitely many integers ab with
∑

b ab s(b) = 0
and

∑
b b ab s(b) �= 0. Hence, we find

Z �
∑

b
ab s(b) · (bλ̃ + μ̃) =

∑

b
b ab s(b) · λ̃,

contradicting our assumption that X is generic. Hence, for a suitably chosen b ∈ Z

both (15) holds and there exists a c ∈ Z such that

‖c(bλ̃ + μ̃) + λ̃ − ν‖ < ε.

In other words, for γ = ( bc+1 b
c 1

) ∈ SL2(Z), we have

‖Xγ0γ − Y ‖ < ε,

as desired.

Remark Condition (14) is necessary for SL2(Z)-approximability of Y by X . Whether this
condition also suffices, or, if not, how it shouldbe strengthened to anecessary and sufficient
condition remains an open problem.

2.4 Quasi-Jacobi forms

Consider the real-analytic functions ν : h → C and ξ : h × C → C, given by

ν(τ ) := 1
2i Im(τ )

, ξ (τ , z) := Im(z)
Im(τ )

.

These functions almost transform as a Jacobi form:

(ν|2,0γ )(τ ) = ν(τ ) − c
cτ + d

(ξ |1,0γ )(τ , z) = ξ (τ , z) − cz
cτ + d

(ν|0X)(τ ) = ν(τ ) (ξ |0X)(z) = ξ (z) + λ.

Definition 2.16 Let k ∈ Z, M ∈ Mn(Q). Denote by Cn a subspace of all strictly mero-
morphic functions h × C

n → C. An almost Jacobi form � of rank n, weight k , index M
and analytic type Cn satisfies:
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(i) � ∈ Cn[ν(τ ), ξ (τ , z1), . . . , ξ (τ , zn)];
(ii) �|k,M g = � for all g ∈ �J

n.

Definition 2.17 A quasi-Jacobi form ϕ is the constant term with respect to ν and ξ of an
almost Jacobi form. If Cn equals HolMn , Holn orMerMn , ϕ is a holomorphic, weak or strictly
meromorphic quasi-Jacobi form, respectively. We write J̃hol, J̃weak and J̃ sm for the algebras
of holomorphic, weak, and strictly meromorphic quasi-Jacobi forms.

As a first example, quasimodular forms are quasi-Jacobi forms of rank n = 0.
More interestingly, the functions

E2(τ , z) − 2π i ν(τ ), E1(τ , z) + 2π i ξ (τ , z),

are almost strictly meromorphic Jacobi forms of index 0 and weight 2 and 1, respectively.
Hence, E2 and E1 are strictly meromorphic quasi-Jacobi forms. Observe that

E2(τ , z) = −DzE1(τ , z) E1(τ , z) = (2π i)Dz log�(τ , z)
(

Dz = 1
2π i

∂

∂z

)

,

which reminds one of

e2 = 8π2Dτ log η,
(

η(τ ) = q1/24
∏

n
(1 − qn), Dτ = 1

2π i
∂

∂τ
= q

∂

∂q

)

.

Remark Let � be the meromorphic almost Jacobi form corresponding to ϕ and write

�(τ , z) =
∑

i,j
ϕi,j(τ , z) ν(τ )i ξ (τ , z1)j1 · · · ξ (τ , zn)jn .

Making use of the algebraic independence of ν and ξ over the field of meromorphic
functions, we find ϕ ∈ J̃ sm precisely if ϕ ∈ MerMn and there exist a finite number of
ϕi,j ∈ MerMn , indexed by a subset of Z≥0 × Z

n≥0, satisfying

(ϕ|γ )(τ , z) =
∑

i,j
ϕi,j(τ , z)

( c
cτ + d

)i+|j| zj
(2π i)i

;

(ϕ|X)(z) =
∑

j
ϕ0,j(z) (−λ)j .

These are equations (8) and (9) in the Introduction. (Recall that for vectors a ∈ C
n, b ∈ Z

n

we write ab = ∏
r a

br
r .)

The strictly meromorphic quasi-Jacobi forms e2 and E1 play a central role as building
blocks of quasi-Jacobi forms out of Jacobi forms. For convenience, we introduce the
following alternative normalizations

e2 := 1
4π2 e2 = 1

12
− 2

∑

m,r≥1
mqmr, A = 1

2π i
E1.

Quasi-Jacobi forms are not invariant under the action of the Jacobi group. However, the
fact that an almost Jacobi form is a polynomial in ν and ξ implies that a quasi-Jacobi form
transforms “up to a polynomial correction” as a Jacobi form, or, equivalently, that it is a
polynomial in the strictly meromorphic quasi-Jacobi forms e2(τ ) and A(τ , z) with Jacobi
forms as coefficients.
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Proposition 2.18 An equivalent definition for a strictly meromorphic quasi-Jacobi form
is as follows: ϕ ∈ J̃ smk,M if ϕ ∈ MerMn and there exist a finite number of ψi,j ∈ J smk−2i−|j|,M,
indexed by a subset of Z≥0 × Z

n≥0, such that

ϕ(z) =
∑

i,j
ψi,j(z)ei2 A(z1)j1 · · ·A(zn)jn . (16)

Proof We define the coefficients ψi,j by the expansion of the almost Jacobi form � corre-
sponding to ϕ, i.e.

�(τ , z) =:
∑

i,j
ψi,j(τ , z)

(
e2(τ ) + ν(τ )

2π i

)i ∏

r
(A(τ , zr) + ξ (τ , zr))jr . (17)

Note that e2(τ )+ ν(τ )
2π i andA(τ , zr)+ξ (τ , zr) transform as Jacobi forms.Moreover, they are

algebraically independent over the space of all meromorphic functions. Hence, it follows
that the coefficients ψi,j are strictly meromorphic Jacobi forms. The constant term with
respect to i and j, by definition equal to ϕ, is now easily seen to be equal to the right-hand
side of (16).

Remark From (17) it follows that the ϕi,j are quasi-Jacobi forms related to the ψi,j by

ϕi,j(z) =
∑

i′ ,j′

(
i + i′

i

)(j + j′
j

)

ψi+i′ ,j+j′ (z)ei
′
2
∏

r
A(zr)j

′
r ,

where
(j + j′

j

)

:=
∏

r

(
jr + j′r
jr

)

.

Also, note that given a representation for ϕ as in (16) one has

ϕ1,0 = ∂

∂e2
ϕ and ϕ0,ei (z) = ∂

∂A(zi)
ϕ(z).

By (16) quasi-Jacobi forms share the properties of Jacobi forms with respect to the
location of the poles:

Corollary 2.19 The statement of Proposition 2.9 also holds when ϕ is a strictly meromor-
phic quasi-Jacobi form.

As a corollary of Theorem 2.7, we have the following representations for the algebras J0

and J̃0 of all rank one strictly meromorphic Jacobi forms and strictly meromorphic quasi-
Jacobi forms with all poles at the lattice points Lτ :

J0 = C[E2 − e2, E3, e4 ,�], J̃0 = C[E1, E2, E3, e2, e4 ,�].

Observe the vector subspaces for fixedweight and index are finite-dimensional. This holds
more generally.
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Corollary 2.20 The space of all meromorphic quasi-Jacobi forms of some weight k,
index M, and with all poles in a finite union of fixed rational hyperplanes as in Theo-
rem 1.6 is finite-dimensional.

Proof This follows directly from the previous proposition as by Corollary 2.10 the number
of linearly independent ψi,j is finite.

The operators Dτ = 1
2π i

∂
∂τ

and Dzi = 1
2π i

∂
∂zi preserve the space of quasi-Jacobi forms

(1 ≤ i ≤ n). This leads to yet another equivalent definition of quasi-Jacobi forms, as
derivatives of Jacobi forms. Note that no power of the quasi-Jacobi form e2 (which is in
fact a quasimodular form and hence of trivial index) can be written in terms of derivatives
of Jacobi forms. However, in case the index is positive definite, by [20, Proposition 1(i)]
we have the following.

Proposition 2.21 Let ϕ be a quasi-Jacobi form of weight k and positive definite index M.
Then, there exist unique Jacobi forms ψd with d ∈ Z

n+1
≥0 of weight k − 2d0 − d1 − . . . − dn

and index M such that

ϕ =
∑

d
Dd0

τ Dd1
z1 · · ·Ddn

zn ψd .

Proof Choose an ordering on Z
n+1 respecting the ordering on Z. Given a Jacobi form ϕ,

let (i, j) be maximal (with respect to this ordering) for which ϕi,j in Proposition 2.18 exists
and is nonzero. A direct check using the same proposition shows that ϕ minus a multiple
ofDj0

τ D
j1
zj1 · · ·Djn

zjnϕi,j is a quasi-Jacobi form for which this maximal index is smaller. Here,
asM is positive definite, this multiple is nonzero.

2.5 Action of the Jacobi Lie algebra by derivations

The last proposition depended on the derivations Dτ and Dzi . Here, we study natural
derivations on the space of quasi-Jacobi forms. Given a quasi-Jacobi form ϕ, recall the
quasi-Jacobi forms ϕi,j (see Equations (8) and (9) or the previous section) are defined for
(i, j) in a finite index set I with I ⊂ Z × Z

n. By convention, we let ϕi,j := 0 if (i, j) /∈ I .

Definition 2.22 Let δτ and δzi be the derivations on the space of quasi-Jacobi forms given
by ϕ 	→ ϕ1,0 and ϕ 	→ ϕ0,ei , respectively (with ei the standard ith basis vector of R

n).

Observe that the functions ϕi,j are given by

ϕi,j = δiτ
i!

δ
j
z
j! ϕ (δjz = δ

j1
z1 · · · δjnzn , j! = j1! · · · jn!).

Now, a key observation for the rest of this work is that the transformation behaviour of ϕ
is uniquely determined by the action of the operators δiτ δ

j
z on ϕ. In particular, the trans-

formation behaviour of the Taylor coefficients of ϕ—which are quasimodular forms—is
determined by the action of δiτ on these coefficients. In the next section, we investigate
how the transformation behaviour of a quasi-Jacobi form determines the transformation
of its Taylor coefficients, and vice versa, by studying the action of these derivations.
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Remark Writing ϕ as in (16) yields

δτ ϕ = ∂

∂e2
ϕ, (δziϕ)(z) = ∂

∂A(zi)
ϕ(z).

The operators Dτ , Dzi , δτ and δzi are part of a Lie algebra of operators acting on quasi-
Jacobi forms by derivations, as we explain now. Following a suggestion by Zagier, we
consider the notion of a g-algebra for any Lie algebra g, defined as follows.

Definition 2.23 Given a Lie algebra g, a g-algebra is an algebra A together with a Lie
homomorphism g → Der(A), where Der(A) denotes the Lie algebra of all derivations
on A.

Denote by W and Iij the weight and index operators acting diagonally by multiplying
with theweight k andBM(ei, ej), respectively, whereBM is the bilinear form corresponding
to the indexM. Let j be the Lie algebra of the Jacobi group. By [20, Eqn. (12)] the Lie algebra
of the Jacobi group acts by the aforementioned derivations on the space of quasi-Jacobi
forms.

Proposition 2.24 The algebra of quasi-Jacobi forms is a j-algebra, i.e. the algebra of
derivations Dτ , Dzi , δτ , δzi ,W and Iij is isomorphic to j and acts on the space of quasi-
Jacobi forms.

Remark More concretely, the commutation relations of (i) the modular operators, (ii) the
elliptic operators and (iii) their interactions are given by

(i) [δτ , Dτ ] = W , [W,Dτ ] = 2Dτ , [W, δτ ] = −2δτ ,

(ii) [δzi , Dzj ] = 2Ii,j , [Iij , Dzi ] = 0, [Iij , δzi ] = 0,

(iii) [δzi , Dτ ] = Dzi , [δτ , Dzi ] = δzi , [W,Dzi ] = Dzi .

The other commutators vanish. As the spaces of almost Jacobi forms and quasi-Jacobi
forms are isomorphic, the same result holds for almost Jacobi forms when one replaces δτ

by 2π i ∂
∂ν

and δz by ∂
∂ξ (z) .

2.6 The double slash operator

A holomorphic Jacobi form has two important representations: the theta expansion and
the Taylor expansion. We generalize the Taylor expansion to strictly meromorphic quasi-
Jacobi forms in such a way that the Taylor coefficients are quasimodular forms.Moreover,
we give criteria based on the coefficients in these representations for a meromorphic
function to be a quasi-Jacobi form.
Given a Jacobi form ϕ andX ∈ Mn,2(Q), the Taylor coefficients of (ϕ|X)(z) around z = 0

are quasimodular forms for the group

�X = {γ ∈ SL2(Z) | Xγ − X ∈ Mn,2(Z), ρ(X − Xγ ) = ζX,Xγ−X }, (18)

where ρ and ζX,X ′ are defined by (10). In contrast to Jacobi forms, it is not true that
the Taylor coefficients of quasi-Jacobi forms are quasimodular. Namely, as stated the
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Introduction, for X = (λ,μ) ∈ Mn,2(Q) one has that (�′|X |γ )(τ , z) equals—up to the
multiplicative constant ρ(X)ρ(−Xγ )—

(�′|Xγ )(τ , z) + cz
cτ + d

(�|Xγ )(τ , z) + λ (�|Xγ )(τ , z) − λ

cτ + d
(�|Xγ )(τ , z), (19)

for all γ ∈ �X . All but the last term− λ
cτ+d (�|X)(τ , z) of (19) dependpolynomially on c

cτ+d ,
so that the Taylor coefficients of (�′|X)(τ , z) at z = 0 are not transforming in accordance
with the quasimodular transformation formula. Note that this last term can be written
as −λ (�|X |0γ )(τ , z). Here, it should be noted that the weight 0 in the slash operator is
unusual. Namely, � is of weight −1, whereas � is of weight 0. In conclusion, the function

�′‖X := ρ(−X)
(
�′|X + λ �|X)

rather than �′|X transforms as a quasi-Jacobi form of weight 0, i.e. for γ ∈ �X one has

(�′‖X |0γ )(τ , z) = (�′‖X)(τ , z) + cz
cτ + d

(�|X)(τ , z).

We now introduce the double slash action (ϕ‖X) for any quasi-Jacobi form ϕ and all
X ∈ Mn,2(R). In the next section, we will use this notation to define the Taylor coefficients
of ϕ at X .

Definition 2.25 GivenM ∈ Mn(Q) and a family of functions ϕ0,j : h × C
n → C indexed

by a finite subset of Z
n≥0 (with ϕ := ϕ0,0), define the double slash operator by

ϕ‖MX := ρ(−X)
∑

j
(ϕ0,j|MX)λj ,

where ρ is given by (10).

Convention 2.26 In case ϕ is a quasi-Jacobi form, in this definition, we always take the
family ϕ0,j determined by the elliptic transformation (16).

Proposition 2.27 Given a family of functions ϕi,j : h× C
n → C indexed by a finite subset

of Z≥0 × Z
n≥0 (with ϕ = ϕ0,0) and X ∈ Mn,2(R), one has

(i) If ϕ satisfies the quasimodular transformation (8) for �, then

(ϕ‖X |γ )(τ , z) =
∑

i,j
(ϕi,j‖Xγ )(τ , z)

( c
cτ + d

)i+|j| zj
(2π i)i

= (ϕ|γ ‖Xγ )(τ , z)

for all γ ∈ �.
(ii) If ϕ satisfies the quasi-elliptic transformation (9), then

ζX ′ ,X ϕ‖X‖X ′ = ζX,X ′ ϕ‖X ′‖X = ρ(−X ′) ζX,X ′ ϕ‖X = ϕ‖(X + X ′)

for all X ′ ∈ Mn,2(Z), where the root of unity ζX,X ′ is defined by (10).
(iii) If ϕ is a quasi-Jacobi form for SL2(Z), then ϕ‖X is a quasi-Jacobi form for �X , and

ϕ‖(X + X ′) = ρ(−X ′) ζX,X ′ ϕ‖X

for all X ′ ∈ Mn,2(Z).
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Proof The transformation of ϕ‖X under the Jacobi group follows by direct computations.
We often make use of

δi
′

τ

i′!
δ
j′
z
j′! ϕi,j = δi

′
τ

i′!
δ
j′
z
j′!

δiτ
i!

δ
j
z
j! ϕ =

(
i + i′

i

)(j + j′
j

)

ϕi+i′ ,j+j′ ,

where (as before)
(j + j′

j

)

=
∏

r

(
jr + j′r
jr

)

.

The first property follows from the following:
ϕ‖X |kγ = ρ(−X)

∑

�

(ϕ0,�|X |kγ )λ�

= ρ(−Xγ )
∑

�

(ϕ0,�|kγ |Xγ )λ�

= ρ(−Xγ )
∑

i,j,�
(ϕi,j+�|Xγ )

(
1
2π i

c
cτ + d

)i (j + �

j

)(
c(z + λγ τ + μγ )

cτ + d

)j ( λ

cτ + d

)�

= ρ(−Xγ )
∑

i,j
(ϕi,j |Xγ )

(
1
2π i

c
cτ + d

)i ( c(z + λγ τ + μγ ) + λ

cτ + d

)j

= ρ(−Xγ )
∑

i,j
(ϕi,j |Xγ )

(
1
2π i

c
cτ + d

)i ( cz
cτ + d

+ λγ

)j

= ρ(−Xγ )
∑

i,j,�
(ϕi,j+�|Xγ )

(
1
2π i

c
cτ + d

)i (j + �

j

)(
cz

cτ + d

)j
(λγ )�

=
∑

i,j
(ϕi,j‖Xγ )

(
1
2π i

c
cτ + d

)i ( cz
cτ + d

)j
.

For the second property, observe that

ϕ‖X‖X ′ = ρ(−X ′)
∑

�

(ϕ0,�‖X |X ′) (λ′)�

= ρ(−X)ρ(−X ′)
∑

j,�
(ϕ0,j+�|X |X ′)

(j + �

j

)

λj (λ′)�,

from which it is clear that ζX ′ ,X ϕ‖X‖X ′ = ζX,X ′ ϕ‖X ′‖X . Moreover, by the elliptic trans-
formation

ϕ‖X ′‖X = ρ(−X)ρ(−X ′)
∑

j,�,m
(ϕ0,j+�+m|X)

(j + � + m
j, �,m

)

λj (λ′)� (−λ′)m

= ρ(−X)ρ(−X ′)
∑

j
(ϕ0,j|X)λj

= ρ(−X ′)ϕ‖X.
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Next, one has

(ϕ‖X + X ′) = ρ(−X − X ′)
∑

�

(ϕ0,�|X + X ′) (λ + λ′)�

= ρ(−X)ρ(−X ′) ζX,X ′
∑

�

(ϕ0,�|X ′|X) (λ + λ′)�

= ρ(−X)ρ(−X ′) ζX,X ′
∑

j,�
(ϕ0,j+�|X)

(j + �

j

)

(−λ′)j(λ + λ′)�

= ρ(−X)ρ(−X ′) ζX,X ′
∑

j
(ϕ0,j|X)λj

= ρ(−X ′) ζX,X ′ ϕ‖X.

Finally, the fact that ϕ‖X is a quasi-Jacobi form follows directly from the definition of�X
and the previous properties.

2.7 Taylor coefficients

Let X = (λ,μ) ∈ Mn,2(Q),M ∈ Mn(Q) and ϕ ∈ Mern. We now study the Taylor coef-
ficients of ϕ‖MX around z = 0. In case ϕ is a strictly meromorphic quasi-Jacobi form,
recall that all poles z lie on hyperplanes of the form s · z ∈ uτ + v for some s ∈ Z

n and
u, v ∈ Q/Z by Theorem 1.6. From now on, we assume that s = ei for some i so that a
Laurent series of ϕ‖X of the form

∑

�1≥L
· · ·

∑

�n≥L
a�1 ,...,�n (z1 − λ1τ − μ1)�1 · · · (zn − λnτ − μn)�n

for some L ∈ Z and a� ∈ C exists. For example, the poles of all the meromorphic quasi-
Jacobi forms we encounter in the applications lie on the coordinate axes.

Definition 2.28 We call the poles of ameromorphic function ϕ : h×C
n → C orthogonal

if the set of poles of ϕ(τ , ·) is given by a union of special hyperplanes of the form

zj ∈ uτ + v

for some j ∈ {1, . . . , n} and u, v ∈ Q/Z.

Making use of the notions of orthogonal poles (defined above) and the double slash action
(defined in Definition 2.25), we will now define the “Taylor coefficients” of a family of
functions in the following way. Recall that in case ϕ is a Jacobi form, there is a canonical
choice for the family of functions ϕ which is part of the data of these “Taylor coefficients”
(see Convention 2.26).

Definition 2.29 Let M ∈ Mn(Q) and ϕ = {ϕi,j}, where ϕi,j : h × C
n → C is a family of

meromorphic functions indexed by a finite subset of Z≥0 × Z
n≥0, with ϕ := ϕ0,0 ∈ MerMn

such that all poles of ϕ are orthogonal. Define g�(ϕ) as the �th Laurent coefficient of ϕ:

ϕ(τ , z) =:
∑

�

g�(ϕ)(τ ) z�.

For all X ∈ Mn,2(R), we define the �th “Taylor coefficient” gX� (ϕ) of ϕ as g�(ϕ‖MX).
Also, denote

gX,r�,s (ϕ) = g�
(
Br
M(z, z)

∑

i+|j|=s
(ϕi,j‖X)(z) zj

(2π i)i
)

(r, s ∈ Z≥0).
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We often omit r, s or X from the notation if r = 0, s = 0 or X = (0, 0).

Remark • The functions gX,r�,s (ϕ) naturally appear if one studies the action of δτ on the
“Taylor coefficients” gX� (ϕ) of ϕ.

• gr�,s(ϕ) = 1
s!
g�(BM(z, z)r (δτ + z1δz1 + . . . + znδzn )sϕ).

• In case r = 0, one may be tempted to write

“ gX,0�,s (ϕ) =
∑

i+|j|=s

1
(2π i)i

g�−j
(
ϕi,j‖X

)′′ .

However, we do not assume that the functions ϕi,j admit orthogonal poles, so the
Taylor expansion of ϕi,j may not exist. For example, taking ϕ = F2 (defined by
Definition1.1),wewill see later thatϕ0,e1 (z1, z2) = 1

�(z1+z2) , whichhas apolewhenever
z1 + z2 = 0. Theorem 2.33 implicitly shows that the notation gX,r�,s (ϕ) is well-defined
for a quasi-Jacobi form ϕ with all poles orthogonal.

Thedata {gX� (ϕ)}uniquely determineϕ aswell as the familyϕ = {ϕi,j}.Hence, it is natural
to ask under which conditions on gX� (ϕ) the function ϕ is a meromorphic quasi-Jacobi
form. Before we answer this question, we study the modular properties of gX� (ϕ) given ϕ

is a quasi-Jacobi form. As a corollary of the previous proposition on ϕ‖X , generalizing [9,
Theorem 1.3] to quasi-Jacobi forms, we first show that gX0 (ϕ) is a quasimodular form in
case ϕ is holomorphic.

Corollary 2.30 Let ϕ be a holomorphic quasi-Jacobi form of weight k and index M. For
all X ∈ Mn,2(Q), the function gX0 (ϕ) is a holomorphic quasimodular form of weight k for
the group �X (defined by (18)). Moreover,

δτ gX0 (ϕ) = gX0 (δτϕ).

Proof Let X ∈ Mn,2(Q) and γ ∈ �X . Then, by Proposition 2.27(2.27) one finds

(gX0 (ϕ)|γ )(τ ) = (ϕ‖X |γ )(τ , 0) =
∑

i
gX0 (ϕi)

( 1
2π i

c
cτ + d

)i
,

where ϕi denotes the family corresponding to ϕi,0. Holomorphicity in h and at infinity
follows directly as ϕ is a holomorphic Jacobi form. Hence, gX0 (ϕ) is a quasimodular form
for this group and δrτ gX0 (ϕ) = 1

r!g
X
0 (ϕr) = gX0 (δrτ ϕ).

In the above corollary, observe that if ϕ is a true Jacobi form (rather than a quasi-Jacobi
form), then δτ ϕ = 0. Correspondingly, in that case δτ gX0 (ϕ) = 0 and gX0 (ϕ) is a true
modular form (rather than a quasimodular form).
The quasimodularity of the other coefficients gX� (ϕ) can be understood in terms of lower

coefficients in two ways. First of all, certain linear combinations of derivatives of these
coefficients are modular. Secondly the action of δiτ on gX� (ϕ) can be expressed in terms of
other coefficients.
We first show that these two ways are equivalent. Recall that (x)n denotes the Pochham-

mer symbol (x)n = x(x + 1) · · · (x + n − 1).

Proposition 2.31 Let g = gk , gk−2 . . . , gk−2p be quasimodular forms of depth at most p
and weight k, k − 2 . . . , k − 2p, respectively. Then, the following are equivalent:
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(i) δiτ g = gk−2i for i = 0, . . . , p;
(ii) The functions

⎧
⎪⎨

⎪⎩

∑

0≤m≤p−i
(−1)m

Dm
τ gk−2i−2m

(k − 2i − m − 1)mm!
if k > 2p or i < p − 1,

g2 − e2g0 if k = 2p and i = p − 1

for i = 0, . . . , p − 1 are modular forms of weight k − 2i;
(iii) The functions

∑

0≤m≤p−i
(−1)m

(Dτ + e2)mgk−2i−2m

(k − 2i − m − 3
2 )m m!

for i = 0, . . . , p − 1 are modular forms of weight k − 2i.

Remark Observe that ifm ≤ p − i and i ≤ p − 1 one has that

k − 2i − m − 1 ≥ k − 2p.

Let k = 2p, i = p−1 and takem = p− i, i.e.m = 1. Then, the numerator (k−2i−m−1)m
vanishes. Moreover, for these values of k, i andm, the function gk−2i−2m is a modular form
of weight 0. Hence, it is a constant function. Therefore, also the numerator Dm

τ gk−2i−2m
vanishes in this case. One can think of e2 as being the appropriate regularization of the
corresponding ill-defined ratio.
Observe that in the third equivalence we replaced Dτ by Dτ + e2, in which case the

corresponding numerator never vanishes. If one would replace Dτ by e2, one would
obtain a generalisation of the functions ϕn of [4, Proposition 3.1].

Proof Assume that (2.31) holds.Define gk−2p−2 := 0.Then, using [δτ , Dτ ] = W (as follows
from Proposition 2.24), it follows that applying δτ to a term in the sum in (2.31) yields

(−1)m
Dm

τ gk−2i−2m−2
(k − 2i − m − 1)m m!

− (−1)m−1 Dm−1
τ gk−2i−2m

(k − 2i − (m − 1) − 1)m−1 (m − 1)!
,

where the second term is taken to be zero when m = 0. Also the first term vanishes
when m = p − i as gk−2p−2 is set to be zero. Hence, after applying δτ the sum becomes
a telescoping sum, equal to zero. Also δτ (g2 − e2g0) = g0 − g0 = 0. The third statement
follows from the first by the same argument, mutatis mutandis.
Conversely, the first statement follows inductively from the second (or third) by using

that all but two terms in the same sum, which is equal to zero, cancel. Hence, these terms
are equal.

Inspired by the above result, we now also introduce certain linear combinations which
later turn out to bemodular. Recall (x)n = x(x+1) · · · (x+n−1) denotes the Pochhammer
symbol.

Definition 2.32 Let k ∈ Z,M ∈ Mn(Q), ϕ ∈ MerMn and a family ϕ as before. For � ∈ Z
n

and X ∈ Mn,2(Q) with k + |�| ≥ 0, the functions ξX� (ϕ)(τ ) : h → C are defined by

ξX� (ϕ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


 1
2 (k+|�|)�∑

r=0
(−1)r

r∑

s=0

Dr
τ (g

X,r−s
�,s )(ϕ)

(k + |�| − r − 1)r (r − s)!
k + |�| �= 2,

gX� (ϕ) − e2
(
gX,1�,0 (ϕ) + gX,0�,1 (ϕ)

)
k + |�| = 2.

(20)
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Abbreviate ξX� (ϕ) by ξ�(ϕ) if X is the zero matrix.

Remark Weformulate all results below for ξX� (ϕ) as defined above, but by Proposition 2.31
all results remain valid after replacing ξX� (ϕ) by


 1
2 (k+|�|)�∑

r=0
(−1)r

r∑

s=0

(Dτ + e2)r (gX,r−s
�,s )(ϕ)

(k + |�| − r − 3
2 )r (r − s)!

.

Note that this equation, as well as Eq. 20, can be inverted, expressing ξXm(ϕ) as linear
combination of derivatives of certain gX� (ϕ).

Now, we have completed the full set-up for the main results on Taylor coefficients of
quasi-Jacobi forms. In the first theorem, we characterize when a family of meromorphic
functions is invariant under the quasimodular action in terms of its Taylor coefficients,
generalizing [9, Theorem 3.2]:

Theorem 2.33 Let � be a congruence subgroup, k ∈ Z and M ∈ Mn(Q). As before, let
ϕ = {ϕi,j} be a family of meromorphic functions h × C

n → C with ϕ := ϕ0,0 ∈ MerMn and
admitting a Laurent expansion around z = 0. Then, the following are equivalent:

(i) The function ϕ satisfies the quasimodular transformation (8)

(ϕ|k,M γ )(τ , z) =
∑

i,j
ϕi,j(τ , z)

( c
cτ + d

)i+|j| zj
(2π i)i

for all γ ∈ �;
(ii) The coefficients g�(ϕ) are quasimodular forms of weight k + |�| on �, of which the

transformation is uniquely determined by the coefficients of the ϕi,j , i.e.

δrτ g�(ϕ) =
r∑

s=0

r!
(r − s)!

gr−s
�,s (ϕ) ;

(iii) The functions ξ�(ϕ) are modular forms of weight k + |�| on �.

Proof Expanding (8) yields
∑

�

g�(ϕ)(γ τ )
(cτ + d)k+|�| z

� =
∑

�

∑

r,s

g�,s(ϕ)(τ )
r!

( c
cτ + d

)r+s
(BM(z, z))rz�

Extracting on both sides the coefficient of z� yields

δrτ g�(ϕ) =
∑

s

r!
(r − s)!

gr−s
�,s (ϕ) .

Also, the coefficient g�(ϕ) is holomorphic in h as well as at the cusps of �, because of
the analytic properties of the functions ϕi,j . Hence, the first statement is equivalent to the
second. The equivalence of the second to the third follows from Proposition 2.31.

Sometimes one is interested in comparing the action of δτ on some quasi-Jacobi form ϕ

with the action of δτ on the Taylor coefficients of ϕ. By expanding the equality in (2.33)
above we find that the action of δτ on the Taylor coefficients of ϕ corresponds to the
action of BM(z, z) + δτ + ∑

j zj δzj on ϕ. In [20, Proposition 2(ii)] an analogous result for
the Fourier coefficients of a weakly holomorphic quasi-Jacobi form is derived.
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Corollary 2.34 If ϕ = ∑
� g�(ϕ)(τ ) z� is a strictly meromorphic quasi-Jacobi form, then

∑

�

δτ g�(ϕ) z� = (
BM(z, z) + δτ +

∑

j
zj δzj

)
ϕ.

One can characterize a quasi-Jacobi form ϕ by its Taylor coefficients in three ways:
by considering gX� (ϕ) as a vector-valued quasimodular form, by the modularity of the
functions ξX� (ϕ), and, finally, by the action of δτ on the quasimodular form gX� (ϕ).Write f X

for gX� (ϕ) or ξX� (ϕ). Then, the ‘elliptic transformation’ of the (quasi)modular form f X is
given by

ρ(X ′) ζX ′ ,X f X+X ′ = f X for all X ′ ∈ Mn,2(Z). (21)

Recall that gX� (ϕ) and ξX� (ϕ) are only defined when the zeros of ϕ are orthogonal (see
Definition 2.28) and depend on a family of functions ϕi,j : h × C

n → C. Moreover, recall
that in case ϕ is a quasi-Jacobi form by Convention 2.26 this family ϕ = {ϕi,j} determines
the transformation of ϕ. Theorem 1.7 follows from the following result.

Theorem 2.35 Let k ∈ Z,M ∈ Mn(Q) and ϕ ∈ MerMn be such that the poles of ϕ are
orthogonal. Given a family ϕ = {ϕi,j}, indexed by (i, j) in a finite subset of Z≥0 × Z

n≥0, of
meromorphic functions ϕi,j : h × C

n → C with ϕ = ϕ0,0, the following are equivalent:

(i) The function ϕ is a strictly meromorphic quasi-Jacobi form of weight k and index M
for which the functions ϕi,j determine its transformation behaviour as in (8) and (9).

(ii) For all X = (λ,μ) ∈ Mn,2(Q) with (τ ,λτ + μ) not a pole of ϕ for some τ ∈ h, the
function gX0 (ϕ) is a vector-valued quasimodular form satisfying (21) and transforming
as

gX0 (ϕ)|kγ =
∑

s
gXγ
0,s (ϕ)

( c
cτ + d

)s
.

(ii′) For all X ∈ Mn,2(Q) the function gX� (ϕ) is a vector-valued quasimodular form satis-
fying (21) for � = 0 and transforming as

gX� (ϕ)|kγ =
∑

r

∑

s

1
(r − s)!

gXγ ,r−s
�,s (ϕ)

( c
cτ + d

)r
.

(iii) For all � ∈ Z
n the functions ξ�(ϕ) are modular forms of weight k + |�| for SL2(Z) and

for all X ∈ Mn,2(Q) the functions ξX0 (ϕ) satisfy (21).
(iii′) For all X ∈ Mn,2(Q) and � ∈ Z

n the functions ξX� (ϕ) in (20) are modular forms of
weight k + |�| for �X and satisfy (21).

(iv) For all X ∈ Mn,2(Q) and � ∈ Z
n the functions gX� (ϕ) are quasimodular forms of

weight k + |�| for �X , satisfying (21) and

δrτ gX� (ϕ) =
∑

s

r!
(r − s)!

gX,r−s
�,s (ϕ) . (22)

Proof (2.35) implies (2.35): Let X ∈ Mn,2(Q) and γ ∈ �X be given. By Proposition 2.27
the function ϕ‖X satisfies the conditions of Theorem 2.33 for � = �X . Moreover, by the
same proposition (21) is satisfied.
(2.35) implies (2.35′): This follows directly from Theorem 2.33 for � = �X .
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(2.35′) implies (2.35): Observe that �X = SL2(Z) for X equal to the zero matrix. Hence,
we simply forget some of the properties of ξX� .
(2.35) implies (2.35′): As ξ� is a modular form for SL2(Z) for all � ∈ Z

n, it follows by
Theorem 2.33 that ϕ satisfies the quasimodular transformation for all γ ∈ SL2(Z). As by
Proposition 2.27

ϕ‖X |kγ =
∑

i,j
(ϕi,j‖Xγ )

( 1
2π i

c
cτ + d

)i ( cz
cτ + d

)j
,

the result follows by extracting the coefficients of z on both sides. Finally, note that
ξX0 = gX0 .
(2.35′) implies (2.35): This follows directly by restricting to � = 0.
(2.35) implies (2.35): Suppose z = λτ +μ, with X = (λ,μ) ∈ Mn,2(Q), is not a pole of ϕ.

Let ϕi be the family of functions corresponding to ϕi,0. Using (2.35), for γ ∈ SL2(Z) one
has that

(gX0 (ϕ)|kγ )(τ ) =
∑

i
gXγ
0 (ϕi)(τ )

(
1
2π i

c
cτ + d

)i

= ρ(−Xγ )
∑

i,�
(ϕi,�|Xγ )(τ , 0)

(
1
2π i

c
cτ + d

)i
(λγ )�

= ρ(−Xγ )
∑

i,j,�
(ϕi,j+�|Xγ )(τ , 0)

(
1
2π i

c
cτ + d

)i(j + �

j

)(
c(λγ τ + μγ )

cτ + d

)j
λ�.

On the other hand,

(gX0 (ϕ))|kγ = ρ(−X)
∑

�

(ϕ0,�|X |kγ )(τ , 0)λ�

= ρ(−Xγ )
∑

�

(ϕ0,�|kγ |Xγ )(τ , 0)λ�.

Combining the identities yields

∑

�

(ϕ0,l |kγ |Xγ )(τ , 0)λ� =
∑

i,j,�
(ϕi,j+�|Xγ )(τ , 0)

(
1
2π i

c
cτ + d

)i(j + �

j

)(
c(λγ τ + μγ )

cτ + d

)j
λ�.

As both sides equal ρ(Xγ ) gX0 (ϕ), which is periodic with finite period as a function of λ,
the constant terms with respect to λ agree. Hence,

(ϕ|γ |X)(τ , 0) =
∑

i,j
(ϕi,j|X)(τ , 0)

( 1
2π i

c
cτ + d

)i(c(λτ + μ)
cτ + d

)j

for all X = (λ,μ) ∈ Mn,2(Q) with X not corresponding to a pole. Therefore, ϕ satisfies the
quasimodular transformation for all z of the given form. As (Qnτ × Q)n \ Pϕ , with Pϕ the
set of poles of ϕ, lies dense in C

n for all τ ∈ h, the function ϕ satisfies the quasimodular
transformation equation.
For the elliptic transformation, we again assume z = λτ + μ, with X = (λ,μ) ∈

Mn,2(Q), is not a pole of ϕ. Given X ′ = (λ′,μ′) ∈ Mn,2(Z), by Definitions 2.29, 2.25 and
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Proposition 2.3 we have

∑

�

(ϕ0,�|X)(τ , 0)λ� = ρ(X) gX0 (ϕ)

= ρ(X) ρ(X ′) ζX ′ ,X gX+X ′
0 (ϕ)

= ρ(X) ρ(X ′) ρ(−X − X ′) ζX ′ ,X
∑

�

(ϕ0,�|(X + X ′))(τ , 0) (λ + λ′)�

=
∑

�

(ϕ0,�|X ′|X)(τ , 0) (λ + λ′)�.

The coefficients of λ agree, so

(ϕ|X ′)(τ , z) =
∑

j
ϕ0,j(τ , z) (−λ′)j

for all z of the given form. As before by continuity of ϕ the above equation holds for all z.

Remark The proof of the above result also applies to weak Jacobi forms, after replacing
‘strictly meromorphic Jacobi form’ and ‘(quasi)modular’ by ‘weak Jacobi form’ and ‘weakly
holomorphic (quasi)modular’, respectively.

Specializing to holomorphic Jacobi forms (instead of meromorphic quasi-Jacobi forms),
we obtain the following result, generalizing the main results on Taylor coefficients of
Jacobi forms in [9] to multivariable Jacobi forms.

Corollary 2.36 Let k ∈ Z,M ∈ Mn(Q) andϕ ∈ HolMn . Then, the following are equivalent:

(i) The function ϕ is a holomorphic Jacobi form of weight k and index M.
(ii) For all X ∈ Mn,2(Q) the function gX0 (ϕ) is a vector-valuedmodular form satisfying (21)

and transforming as

gX0 (ϕ)|kγ = gXγ
0 (ϕ).

(ii′) For all X ∈ Mn,2(Q) the function gX� (ϕ) is a vector-valued quasimodular form satis-
fying (21) for � = 0 and transforming as

gX� (ϕ)|kγ =
∑

r

1
r!
gXγ ,r
� (ϕ)

( c
cτ + d

)r
.

(iii′) For all X ∈ Mn,2(Q) and � ∈ Z
n the functions ξX� (ϕ) given by

ξX� (ϕ) =
∑

r
(−1)r

Dr
τ g

X,r
� (ϕ)

(k + |�| − 1)r r!

are modular forms of weight k + |�| for �X and satisfy (21).
(iv) For all X ∈ Mn,2(Q) and � ∈ Z

n the functions gX� (ϕ) are quasimodular forms of
weight k + |�| for �X , satisfying (21) and

δrτ g
X
� (ϕ) = gX,r� (ϕ).
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3 Quasimodular algebras for congruence subgroups
The main result of the previous part, Theorem 2.35, will almost immediately imply the
proof of Theorem1.2 on the quasimodularity of the elements of�∗(N ) for some subgroup.
We will first introduce a more general set-up, in the context of which we will present this
proof. In the rest of this section, we provide many examples of algebras of functions on
partitions to which this general set-up applies, i.e. we will recall the hook-lengthmoments
and the (double) moment functions and explain how the corresponding algebras can be
extended to several congruence subgroups.

3.1 General set-up

We answer the question of how to extend an algebra of functions on partitions for which
the q-bracket is a quasimodular form for SL2(Z) to one for a congruence subgroup �.
More precisely, we consider quasimodular algebras for �.

Definition 3.1 A quasimodular algebra for a congruence subgroup � ≤ SL2(Z) is a
graded algebra of functions f : P → C for which 〈f 〉q is a quasimodular form for � of the
same weight as f .

Given a quasimodular algebra for SL2(Z), we now present a construction of a quasimod-
ular algebra for a congruence subgroup. To do so, from now on we assume that � : P ×
C
r → C and k ∈ Z are such that for all n ≥ 1 the function ϕ�

n : h × Mn,r(C) → C given
by

ϕ�
n (τ , Z) :=

〈 n∏

i=1
�(·, Zi)

〉

q
,

where Zi is the ith row of Z, is a meromorphic quasi-Jacobi form of weight kn which
admits a Laurent expansion around all Z ∈ Mn,r(Q) (after identifyingMn,r(C) with C

nr).
Here, �(λ, z) can be thought of a generalisation of the generating series Wλ(z) of the
Bloch–Okounkov functions Qk , defined by (2).

Definition 3.2 Given such a �, for a ∈ Q
r denote by f �

� (·,a) = f�(·,a) : P → C the �th
Taylor coefficient of �(z) around z = a, i.e.

�(·, z) =:
∑

�

f�(·,a) (z − a)�.

Define the gradedQ-algebraF�(N ) = F (N ) as the algebra generated by theweight k+|�|
elements f�(·,a) for a ∈ 1

N Z
r , � ∈ Z

r .

Remark By Theorem 2.35, up to a sign, fm(·,a) and fm(·, b) agree whenever a − b ∈ Z
r .

Hence, in the definition one can assume that a ∈ [0, 1)r .

For example, letting� be the Bloch–Okounkov generating seriesW , we find Q�+1(a) =
e(− 1

2a) f
W
� (a) (see 4) and �∗(N ) = FW (N ).

Nowwe relate theTaylor coefficients of� to theTaylor coefficients of the corresponding
meromorphic quasi-Jacobi forms ϕ�

n . Let L ∈ Mn,r(Z) and A ∈ Mn,r(Q). An arbitrary
monomial fL in F�(N ) is given by

fL(A) := fL1 (A1) · · · fLn (An) (23)
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with Li and Ai the ith row of L and A, respectively. Recall that gX� (ϕ) denotes the �th
Taylor coefficient of ϕ around λτ +μ; see Definition 2.29. By construction of these Taylor
coefficients, we find

〈f �
L (A)〉q = g (0,A)L (ϕ�

n ),

where on the right-hand side we identifiedMn,r(Z) andMn,r(Q) withZ
nr andQ

nr , respec-
tively. 4

Recall that for N̂ ∈ Z, we write mN̂ = (
N̂ 0
0 1

)
. The following result is the general

statement of Theorem 1.2.

Theorem 3.3 Given � as above and N ≥ 1, let N̂ = (2, N )N. The algebra F�(N ) is a
quasimodular algebra for m−1

N̂ �(N̂ )mN̂ .

Proof Consider a monomial element fL(A) of F (N ) as in (23), for some L ∈ Mn,r(Z)
and A ∈ Mn,r(Q). Write X = (0, A). Then, 〈fL(A)〉q = gXL (ϕn). This Taylor coefficient is
quasimodular for �X by Theorem 2.35. Therefore, it suffices to show that the q-bracket
respects the weight grading of F (N ) and that �X containsm−1

N̂ �(N̂ )mN̂ .
For the first, observe that the weight of f is given by

∑n
i=1(k + |Li|), whereas corre-

spondingly the weight of gXL (ϕ) equals kn + |L| (here |L| = ∑
i,j Lij).

WriteM for the index of ϕ�
n and B = BM for the corresponding bilinear form. Recall

�X = {γ ∈ SL2(Z) | Xγ − X ∈ Mn,2(Z), ρ(X − Xγ ) = ζX,Xγ−X }.

Writing γ = ( a b
c d

)
, we have

Xγ − X = (cA, (d − 1)A), ρ(Xγ − X) = e((c2 − c(d − 1) + (d − 1)2)B(A,A))

and

ζX,Xγ−X = e(B(0, (d − 1)A) − B(cA, A)) = e(−c B(A,A)).

Observe that 2N 2 B(A,A) is integral. Hence, if γ ∈ SL2(Z) satisfies

c ≡ 0 mod N, d ≡ 1 mod N and c2 − c(d − 1) + (d − 1)2 ≡ c mod 2N 2, (24)

then γ ∈ �X .
Let N ′ ∈ Z>0. Then,

m−1
N ′ �(N ′)mN ′ = {( a b

c d
) ∈ SL2(Z) | c ≡ 0 (N ′2), a ≡ d ≡ 1 (N ′)}.

In case 2 � N , the conditions (24) are satisfied for all γ ∈ m−1
N ′ �(N ′)mN ′ when N ′ = N , in

case 2 | N for N ′ = 2N . Therefore,m−1
N̂ �(N̂ )mN̂ ≤ �X .

4Here we hide a small subtlety. Recall that Definition 2.29, in which the Taylor coefficients of a strictly meromorphic
Jacobi form are defined, depended not only on this Jacobi form but also on a family of meromorphic functions
determined by the transformation of this Jacobi form. We omit this family from the notation, as, for X = (0, A) the
double slash operator ‖X coincides with the slash operator |X , so that the “Taylor coefficients” do not involve this
family.
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For a monomial element fL(A) as in (23) with L ∈ Mn,r(Z) and A ∈ Mn,r(Q), and γ ∈
�1(N ) one has that

〈fL(A)〉q
∣
∣γ = e((c2 − cd + (d − 1)2)B(A,A)) 〈fL(A)〉q , (25)

where B is again the bilinear form corresponding to the index of ϕ�
n . Hence, restricting to

A ∈ Mn,r(Q) � Q
nr for which e((c2−cd+ (d−1)2)B(A,A)) = 1 for all γ ∈ �1(N ), we find

the following result. This result allows us to derive Theorem 1.3, using some additional
properties of the Bloch–Okounkov n-point functions.

Proposition 3.4 Given N ≥ 1, for all L ∈ Mn,r(Z) and A ∈ 1
NMn,r(Z) satisfying

B(A,A) ∈ 1
2Z + 1

N Z, one has that 〈fL(A)〉q is a quasimodular form for �1(N ).

Proof This follows from (25) using the following two observations. First of all, c2 − cd +
(d − 1)2 ≡ 0 mod N when c ≡ 0, d ≡ 1 mod N . Secondly, for integers c, d the integer
c2 − cd + (d − 1)2 is always even whenever not both c and d are even.

In the Introduction, we introduced certain functions Q(p)
k introduced in [12]. In that

work the authors let

Q(p)
k (λ) = β

(p)
k +

∑

gcd(2λi−2i+1,p)=1

(
(λi − i + 1

2 )
k−1 − (−i + 1

2 )
k−1),

whereβ
(p)
k = βk (0)(1− 1

p ). Observe that for primes p this agreeswith the definition in (6) in
the Introduction. Similarly, we define functions f d� in terms of the Taylor coefficients f�(a).

Definition 3.5 Let � be as above. Given d ∈ Z
r
>0 , we let

U (d) = {
0, 1

d1 , . . . ,
d1−1
d1

}× · · · × {
0, 1

dr , . . . ,
dr−1
dr

}

and for � ∈ Z
r define

f d,�� (λ) = f d� (λ) :=
∑

a∈U (d)
f �
� (λ, 2a) (λ ∈ P).

Define the graded algebraF (N ) = F (N ),� as theQ-algebra generated by the functions f d,��

for all � ∈ Z
r and d ∈ Z

r
>0 for which di | N for all i.

Then, Theorem 1.4 follows directly from the following result.

Theorem 3.6 Let � be as above. Given N ≥ 1, the algebra F (N ),� is a quasimodular
algebra for the congruence subgroup �0(N 2).

Proof Consider the monomial elements f DL := f D1
L1 · · · f Dn

Ln in F (N ), where L,D ∈ Mnr(Z).
Everywhere in this proof we identifyMn,r(Z) with Z

nr . Then,

f DL =
∑

A∈U (D)
fL(·, 2A).

Now, by part (2.35′) in Theorem 2.35, for all γ = ( a b
c d

) ∈ SL2(Z) one has that

〈fL(·, 2A)〉q|γ =
∑

r≥0
hr(2cA, 2dA)

( c
cτ + d

)r
,

where hr(λ,μ) = ∑r
s=0

1
(r−s)! g

X,r−s
�,s (ϕn) and X = (λ,μ). Note that hr is zero for all but

finitely many r.
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If γ ∈ �0(N 2), then 2cA ∈ 2NMn,r(Z). Hence, for X = (0, 2dA) and X ′ = (2bA, 0) one
has ρ(X ′)ζX ′ ,X = 1. Therefore,

hr(2cA, 2dA) = hr(0, 2dA) and hr(0, 2dA + B) = hr(0, 2dA)

for all B ∈ 2Mn,r(Z). As 2dA ranges over the same values modulo 2 as 2A does for
A ∈ U (D), one finds

〈f DL 〉q|γ =
∑

r≥0

∑

A∈U (D)
hr(0, 2A)

( c
cτ + d

)r

for all γ ∈ �0(N 2). Hence, 〈f DL 〉q is a quasimodular form for �0(N 2).

Remark In fact, given d ∈ Z
r
>0 with di | N 2 for all i, and Dirichlet characters χ1, . . . ,χr

modulo d1, . . . , dr , respectively, the series given by
〈 ∑

a∈U (d)
χ1(a1d1) · · · χr(ardr) f �

� (·, 2a)
〉

q

are quasimodular forms for �0(N 2) of character χ1 · · · χr .

The rest of this part is devoted to providing examples of quasimodular algebras of higher
level, using Theorem 3.6.

3.2 First application: the Bloch–Okounkov theorem of higher level

The results on the Bloch–Okounkov algebra, as stated in the introduction, are proven in
this section. The proofs follow almost immediately from the results in the previous section
using the properties of the Bloch–Okounkov n-point functions.
Recall the Bloch–Okounkov n-point functions Fn are defined (in Definition 1.1) as

follows. For all n ≥ 0, letSn be the symmetric group on n letters and let

Fn(τ , z1, . . . , zn) =
∑

σ∈Sn

Vn(τ , zσ (1), . . . , zσ (n)),

where the functions Vn are defined recursively by V0(τ ) = 1 and

n∑

m=0

(−1)n−m

(n − m)!
θ (n−m)(τ , z1 + . . . + zm) Vm(τ , z1, . . . , zm) = 0.

These n-point functions Fn are quasi-Jacobi forms of which we determine the weight and
index (or rather the bilinear form uniquely determining a symmetric matrixM ∈ Mn(Q)
which is the index).

Lemma 3.7 The n-point functions Fn aremeromorphic quasi-Jacobi forms of weight n and
index B(z, z) = − 1

2 (z1 + . . . + zn)2.

Proof We start with the observation that for all n ≥ 0 the function �(n)(z)
�(z) is a true

meromorphic Jacobi form (of weight n and index B(z, z) = 0), in contrast to �(z) itself
which isweakly holomorphic. Namely, all poles are given by z ∈ Zτ +Z and for z = aτ +b
with a, b ∈ Q, one has that

�(n)(aτ + b)
�(aτ + b)

=
∑

ν∈F νn e(νb) qν2/2+aν
∑

ν∈F e(νb) qν2/2+aν
→ −a,
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whenever Imτ → ∞, or equivalently q → 0.
Next, observe that �(z1 + . . . + zn)Vn(z1, . . . , zn) can be written as a polynomial of

weight n − 1 in �(i)(z1+...+zj)
�(z1+...+zj) for i, j = 1, . . . , n; a fact which can be proven inductively by

its recursion (3). Hence, �(z1 + . . . + zn)Vn(z1, . . . , zn) is a meromorphic Jacobi form.
As �(z)−1 is a meromorphic Jacobi form of weight 1 and index given by the bilinear form
B(z, z) = − 1

2z
2, we conclude that Fn is a meromorphic quasi-Jacobi form of weight n and

index B(z, z) = − 1
2 |z|2.

Observe that Theorem 1.2 is a direct corollary of the previous lemma and Theorem 3.3.
Also, Theorem 1.4 follows directly from the previous lemma and Theorem 3.6. So, we are
only left with the following proof.

Proof of Theorem 1.3 First of all, in case a ∈ Z, one has B(a,a) = − 1
2 |a|2 ∈ 1

2Z. Hence,
the result follows directly from Proposition 3.4.
Ifa /∈ Z, for both 〈Qk (a)〉q and 〈Q1(a)〉q the root of unity in (25) is e(B(a,a)) = e(B(a, a)),

so that the subgroup of quasimodularity for their ratio is �1(N ).
For the holomorphicity in the second case, observe that 〈Q1(a)〉q equals �(a)−1 up

to a constant. Also, 〈Qk (a)〉q can be written as a product of Taylor coefficients of the
function �(z1 + . . . + zn + a)−1 and of �(z1 + . . . + zn + a) Fn(z1 + a1, . . . , zn + an),
the latter Taylor coefficients being holomorphic quasimodular forms. Observe that the
Taylor coefficients around z1 = . . . = zn = 0 of

�(a)
�(z1 + . . . + zn + a)

are all polynomials in the holomorphic quasimodular forms �(i)(a)
�(a) . Therefore,

〈Qk (a)〉q
〈Q1(a)〉q is

a holomorphic quasimodular form.

3.3 Second application: hook-length moments of higher level

As a second example, consider the hook-length moments

Hk (λ) := −Bk
2k

+
∑

ξ∈Yλ

h(ξ )k−2 (k ≥ 2),

where Bk is the kth Bernoulli number, Yλ denotes the Young diagram of λ, ξ is a cell in
this Young diagram, and h(ξ ) denotes the hook-length of this cell. By [6, Theorem 13.5]
one has that Hk (λ) is (up to a constant) equal to the (k − 2)th order Taylor coefficient
of Wλ(z)Wλ(−z). In particular, any homogeneous polynomial in the Hk admits a quasi-
modular q-bracket. The results in Sect. 3.1 now specialize to the following statements.

(i). For a ∈ Q and k ∈ Z≥2, let

Hk (λ, a) := α̃k (a) + 1
2
∑

ξ∈Yλ

(e(a h(ξ )) + (−1)k e(−a h(ξ ))
)
h(ξ )k−2,

where
α̃−2(a)
z2

+ α̃−1(a)
z

+
∑

k≥0
α̃k (a)

zk−2

(k − 2)!
:= 1

8
sinh

(z + 2π ia
2

)−2
.

Denote by H(N ) the algebra generated by the Hk (·, a) with k ≥ 2 and a ∈ 1
N Z. The

algebraH(N ) is graded by assigning to Hk (·, a) weight k . Let N̂ = (2, N )N .



J-W. M. Ittersum Res Math Sci            (2023) 10:5 Page 35 of 45     5 

Corollary 3.8 The algebraH(N ) is quasimodular of level N̂ , after scaling τ by N̂ .

More concretely, for all homogeneous f ∈ H(N ) of some weight k , the rescaled q-
bracket 〈f 〉qN̂ , where qN̂ = q1/N̂ , is a quasimodular form of weight k for �(N̂ ).

(ii). Given N ≥ 1, k ∈ Z
n and a ∈ 1

N Z
n, write Hk (λ,a) = Hk1 (λ, a1) · · ·Hkn (λ, an).

Corollary 3.9 For a ∈ 1
N Z

n with |a| ∈ Z and k ∈ Z
n≥2 the q-bracket 〈Hk (·,a)〉q is a

quasimodular form of weight |k| for �1(N ).

(iii). Let

Ht
k (λ) := −Bk

2k
tk +

∑

ξ∈Yλ

h(ξ )≡0 mod t

h(ξ )k−2 (k, t ∈ Z>0),

which (up to a constant) also occurs in [3]. Denote byH(N ) the algebra generated by theHt
k

for which k is even and t | N . This algebra is graded by assigning weight k to Ht
k .

Corollary 3.10 The algebraH(N ) is quasimodular for �0(N 2).

More concretely, for all homogeneous f ∈ H(N ) of weight k , the q-bracket 〈f 〉q is a
quasimodular form of weight k for �0(N 2).

3.4 Third application: moment functions of higher level

Next, we consider the moment functions in [25]

Sk (λ) := −Bk
2k

+
∞∑

i=1
λk−1
i (k ≥ 1).

The generating seriesS (z) : P → Q given byS (z) := 1
2z2 +∑

k≥2 Sk
zk−2

(k−2)! satisfies [22,
Corollary 3.3.2]

〈S (z1) · · ·S (zn)〉q = 1
2n+1

∑

α∈�(n)

∏

A∈α

∑

s∈{−1,1}|A|
D|A|−1

τ E2(s · zA), (26)

where �(n) denotes the set of all set partitions of the set {1, . . . , n}, |A| the cardinality of
the set A, and zA = (za1 , . . . , zar ) if A = {a1, . . . , ar}. Hence, the n-point functions (26)
are quasi-Jacobi forms of weight 2n and index zero. Because the index of the quasi-Jacobi
forms (26) is zero, the root of unity in (25) vanishes for all γ ∈ SL2(Z). Therefore, the
results of Sect. 3.1 specialize to the following results for the groups �1(N ) and �0(N )
(rather than �(N ) and �0(N 2), respectively).

(i) & (ii). Let

Sk (λ, a) := αk (a) + 1
2

∞∑

i=1

(e(aλi) + (−1)ke(−aλi)
)
λk−1
i (a ∈ Q, k ≥ 1),

where

α−1(a)
2π iz

+
∑

k≥0
αk (a)

(2π iz)k−1

(k − 1)!
:= 1

2
(e(z + a) − 1)−1 (27)
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(for k ≥ 2, these values agree with the constants α̃k in the previous example). Denote
by S(N ) the algebra generated by the Sk (·, a) with a ∈ 1

N Z. Assign to Sk (·, a) weight k .
Corollary 3.11 The algebra S(N ) is quasimodular for �1(N ).

More concretely, for all homogeneous f ∈ H(N ) of weight k , the q-bracket 〈f 〉q is a
quasimodular form of weight k for �1(N ).

(ii). Let

Stk (λ) := −Bk
2k

tk +
∑

i≥0
λi≡0 mod t

λk−1
i (k, t ∈ Z>0).

Denote by S (N ) the algebra generated by the Stk for which k is even and t | N . Assign to Stk
weight k .

Corollary 3.12 The algebra S (N ) is quasimodular for �0(N ).

More concretely, for all homogeneous f ∈ S (N ) of weight k , the q-bracket 〈f 〉q is a
quasimodular form of weight k for �0(N ).

3.5 Fourth application: double moment functions of higher level

As a final example, consider the double moment functions introduced in [22] given by

Tk,l(λ) := Ck,l +
∞∑

m=1
mkFl(rm(λ)) (k ≥ 0, l ≥ 1).

Here,Ck,l is a constant equal to− Bk+l
2(k+l) if k = 0 or l = 1 and 0 else, Fl is the Seki–Bernoulli

polynomial of positive integer degree l, defined by Fl(n) :=
∑n

i=1 il−1 for all n ∈ Z>0,
and the multiplicity rm(λ) of parts of size m in a partition λ is defined as the number of
parts of λ of sizem. The generating seriesT (z, w) := − 1

2z − 1
2w +∑

k+l≡0(2) Tk,l
zkw�−1

(k)!(�−1)!
satisfies [22, Theorem 4.4.1.]

G1(z, w) := 〈T (z, w)〉q = −1
2

�(z + w)
�(z)�(w)

.

Hence, the 1-point functionG1 is a Jacobi formofweight 1 and indexB((z, w), (z, w)) = zw.
This example now deviates from the previous ones because 〈T (z1, w1) · · ·T (zn, wn)〉q is
not a Jacobi form of some fixed weight (but rather a linear combination of functions of
different weights). It is, therefore, that we have to consider a different product � on the
space of functions of partitions, for which

Gn(z,w) := 〈T (z1, w1) � · · · � T (zn, wn)〉q = (−1)n
n∏

i=1

1
2

�(zi + wi)
�(zi)�(wi)

. (28)

To define this product consider the isomorphism C
P → C[[u1, u2, . . .]], f 	→ 〈f 〉u, given

by

〈f 〉u :=
∑

λ∈P f (λ)uλ
∑

λ∈P uλ

(uλ = uλ1uλ2 · · ·).
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Then, the induced product is defined by

〈f � g〉u := 〈f 〉u 〈g〉u . (29)

The algebra T generated by the Tk,l contains exactly the same elements as the algebra
consisting of polynomials in the moment functions Tk,l with multiplication given by the
induced product � [22].
In Sect. 3.1, one can replace the pointwise product on functions of partitions by the

product �. Therefore, we have the following generalisations of the algebra T .

(i) For a, b ∈ Q, and k ≥ 0, � ≥ 1, let

Tk,�(λ, a, b) := Ck,�(a, b) +
∞∑

m=1
mk(e(am)F b

� (rm(λ)) + (−1)k+le(−am)F −b
� (rm(λ))

)
,

where

Ck,�(a, b) :=

⎧
⎪⎪⎨

⎪⎪⎩

αk (a) � = 1,

α�−1(b) k = 0,

0 else,

and the constants αk are defined by (27). Also, F b
� is defined by F b

� (n) :=
∑n

i=1 e(bi) il−1

for all n ∈ Z>0. Let the Q-algebra T (N ) be generated by the functions Tk,�(·, a, b), where
a, b ∈ 1

N Z, under the induced product. Assign to Tk,�(·, a, b) weight k + � and extend to a
weight grading under the induced product. Let N̂ = (2, N )N .

Corollary 3.13 The algebra T (N ) is quasimodular of level N̂ , after scaling τ by N̂ .

More concretely, for all homogeneous f ∈ T (N ) of some weight k , the rescaled q-
bracket 〈f 〉qN̂ , where qN̂ = q1/N̂ , is a quasimodular form of weight k for �(N̂ ).

(ii)

Corollary 3.14 Let k , � ∈ Z
n and a, b ∈ 1

N Z
n. Whenever a · b ∈ 1

2Z + 1
N Z, one has that

〈Tk1 ,�1 (·, a1, b1) � · · · � Tkn,�n (·, an, bn)〉q
is a quasimodular form of weight |k| + |�| for �1(N ).

(iii) Let

Ts,t
k,�(λ) := Ck,� +

∞∑

m=1
mk F�

(⌊ rms(λ)
t

⌋)
(k, �, s, t ∈ Z>0).

Denote by T (N ) the algebra generated by the Ts,t
k,�, where k, � are even and s, t | N , under

the induced product. Assign to Ts,t
k,� weight k + � and extend to a weight grading under the

induced product.

Corollary 3.15 The algebra T (N ) is quasimodular for �0(N 2).

More concretely, for all homogeneous f ∈ H(N ) of weight k , the q-bracket 〈f 〉q is a
quasimodular form of weight k for �0(N 2).
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Remark Combining this result with Corollary 3.14, by restricting to t = 1, we find that
any polynomial in Ts,1

k,� with respect to the induced product is quasimodular for �0(N ). A
similar statement holds after restricting to s = 1.

4 When is the q-bracket modular?
Wefirst state andprove our answer to the question in the title of this section in full general-
ity, using the main result on the Taylor coefficients of quasi-Jacobi forms (Theorem 2.35).
Afterwards, we providemany examples, i.e. we prove the results on the ‘modular subspace’
of the Bloch–Okounkov algebra as stated in the introduction, and state similar results for
the Bloch–Okounkov algebra for congruence subgroups as well as the algebra of double
moment functions.

4.1 Construction of functions with modular q-bracket

Recall Dτ = 1
2π i

∂
∂τ
, e2 = 1

12 − 2
∑

m,r≥1mqmr is the quasimodular Eisenstein series of
weight 2 and gr−s

�,s (ϕ) is a “Taylor coefficient” of ϕ defined by Definition 2.29. Given a
quasi-Jacobi form ϕ of weight k satisfying the conditions of Theorem 2.35, the functions

ξ�(ϕ) =
∑

r
(−1)r

∑

s≤r

(Dτ + e2)r gr−s
�,s (ϕ)

(k + |�| − r − 3
2 )r (r − s)!

,

are modular forms (see also Proposition 2.31). Therefore, as in the previous section,
assume that � : P × C

r → C and k ∈ Z are such that for all n ≥ 1 the function
ϕ�
n : h × Mn,r(C) → C given by

ϕ�
n (τ , Z) :=

〈 n∏

i=1
�(·, Zi)

〉

q
,

where Zi is the ith row of Z, is a meromorphic quasi-Jacobi form of weight kn which
admits a Laurent expansion around all Z ∈ Mn,r(Q) (after identifyingMn,r(C) with C

nr).
Write F = F�(1) for the graded algebra of Taylor coefficients of � (see Definition 3.2).
Given � ∈ Z

n, our aim is to find h� ∈ F such that 〈h�〉q = ξ�(ϕn), i.e. we want to determine
a pullback of ξ�(ϕn) under the q-bracket. Observe that these pullbacks h� for all � define a
unique linear map F → F so that π (f�) = h�. Note that in this case 〈π (f )〉q is modular
for all f ∈ F .
To define π , assume the algebra F satisfies the following two properties:

(i) Q2 ∈ F ,
(ii) There is a linear operatorD acting on F such that

〈
D

n∏

i=1
�(zi)

〉

q
= (δτ + z1δz1 + . . . + znδzn )ϕ, (30)

where D is extended to a linear operator on F [[z1, . . . , zn]] by D(f z�) = D(f ) z� for
all f ∈ F and � ∈ Z

n.

Remark As observed in [25], by an easy computation one finds that the functionQ2 makes
the q-bracket equivariant with respect to the operator Dτ + e2, i.e.

〈Q2f 〉q = (D + e2)〈f 〉q
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for all f : P → C. This motivates the first condition. The second condition is motivated
by noting that

g�,s(ϕ) = g�
(∑

i+|j|=s
ϕi,j

zj
(2π i)i

)
= 1

s!
g�
(
(δτ + z1δz1 + . . . + znδzn )sϕ

)
. (31)

Recall that the algebraF = F�(1) is generated by the Taylor coefficients f� = f�(0) of�
for � ∈ Z

r . An arbitrary monomial fL in F is given by fL1 · · · fLn with L ∈ Mn,r(Z). We
define an operator on F corresponding to the index of ϕ.

Definition 4.1 Let M = (mi,j) ∈ Mn(Q) be the index of ϕ�
n . Define M to be the linear

operator on F which is given on monomials by

M fL :=
∑

i,j
mi,j fL−ei−ej (L ∈ Mn,r(Z) � Z

nr),

where, on the right-hand side, ei is a unit vector in Z
nr .

Now, Theorem 1.5 can more explicitly be stated as follows, where the three properties
below should be compared with the three properties satisfied by the functions hk in the
introduction (Sect. 1.2).
ByM denote the algebra of modular forms for SL2(Z) with rational Fourier coefficients.

Theorem 4.2 Let F be a quasimodular algebra satisfying the above conditions, and
M ,D : F → F the operators defined by Definition 4.1 and Eq. 30, respectively. Then,
the linear mapping π : F → F given by

π (f ) =
∑

r≥0

r∑

s=0
(−1)r

Qr
2M

r−sD sf
(m − r − 3

2 )r (r − s)! s!

on f ∈ F of homogeneous weight m satisfies

〈π (F )〉q ⊆ M.

Furthermore, one can choose a vector subspaceM ⊆ πF such that

(i) F = M ⊕ Q2F ;
(ii) 〈M〉q ⊆ M;
(iii) 〈Q2F〉q ∩ M = {0}.

Remark For the Bloch–Okounkov algebra�∗ themappingπ turns out to be the canonical
projection of �∗ onH in [21] andM = H. We do not expect that the conditions in this
section ensure that π is a projection in general, nor that π (Q2F ) = {0} (in which case one
could chooseM = π (F )), nor that the splitting in (4.2) is canonical. However, once one
has chosen M it follows immediately from (4.2) that every element of F has a canonical
expansion

f =
∑

i≥0
fi Qi

2

with fi ∈ M, and that 〈f 〉q ∈ M precisely if 〈fi〉q = 0 for all i > 0.
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Proof By (31) and by construction ofM , one has that
1
s!
〈
M r−sD sf�

〉
q = gr−s

�,s (ϕ) .

Hence,

〈π (f�)〉q = ξ�(ϕ),

where ϕ is the meromorphic Jacobi form ϕ(z) = ϕ�
n (z) = 〈∏n

i=1 �(zi)〉q . Hence, π (f ) is
modular under the q-bracket for all f ∈ F .
Choose M0 ⊆ F such that F = M0 ⊕ Q2F . Then, we take M = πM0. As, by

definition, π (f ) − f is a multiple of Q2, the first property follows. The second property is
immediate asM ⊆ π (F ). For the last property, let f ∈ Q2F with 〈f 〉q ∈ M be given. As f
is divisible by Q2, the q-bracket 〈f 〉q is in the image of D + e2 acting on quasimodular
forms. Now, the zero function is the only function in the image ofD+e2 which ismodular,
so that the last property follows.

We now provide several examples of quasimodular algebras to which Theorem 4.2
applies.

4.2 First example: the Bloch–Okounkov algebra

To apply the results of the previous section to the Bloch–Okounkov algebra �∗, we have
to understand how the operators δτ and δzi act on the n-points functions Fn (defined
by Definition 1.1), or equivalently, we have to understand the transformation behaviour
of Fn. This behaviour is uniquely determined by the following two properties.

Proposition 4.3 For all n ≥ 1 one has

δτFn(z1, . . . , zn) = 0,

δz1Fn(z1, . . . , zn) =
n∑

i=2
Fn−1(z1 + zi, z2, z3, . . . , zi−1, zi+1, zi+2, . . . , zn).

Remark As Fn is symmetric in its arguments, above proposition provides an expression
for δzj Fn(z1, . . . , zn) for all j.

Proof The second equality is equivalent to [1, Theorem 0.6], whereas the first statement
seems not to be in the literature. As both statements follow by more or less the same
argument, we give both proofs. That is, we prove

δτVn(z1, . . . , zn) = 0,

δziVn(z1, . . . , zn) =
⎧
⎨

⎩

Vn−1(z1, . . . , zi + zi+1, . . . , zn) i < n

0 i = n
(32)

inductively using the recursion (3), from which the proposition follows directly.
For n = 1 both statements are clearly true. Hence, by the identity

[δτ , Dm
z ] = −2mDm−1

z δz + m(m − 1)Dm−2
z

and after assuming that δτVn = 0, we find that θ (z1 + . . . + zn+1) δτVn+1(z) equals

−
n−1∑

m=0

(−1)n−1−m

(n − 1 − m)!
θ (n−1−m)(z1 + . . . + zm) Vm(z1, . . . , zm).
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By the recursion (3) one finds that this expression vanishes. Hence, δτVn+1 = 0 and
δτFn = 0 as desired.
Denote

V i
m−1(z1, . . . , zm) = Vm−1(z1, . . . , zi + zi+1, . . . , zm).

By applying δzi to the recursion (3), using the identity [δz, Dm
z ] = −2mDm−1

z I (with I the
index operator; see Sect. 2.5) and assuming that (32) holds, we find

θ (z1 + . . . + zn+1) δziVn+1(z1, . . . , zn+1)

=
n∑

m=i

(−1)n−m

(n − m)!
θ (n−m)(z1 + . . . + zm) Vm(z1, . . . , zm)+

−
n∑

m=i+1

(−1)n+1−m

(n + 1 − m)!
θ (n+1−m)(z1 + . . . + zm) V i

m−1(z1, . . . , zm)

= −
i−1∑

m=0

(−1)n−m

(n − m)!
θ (n−m)(z1 + . . . + zm) Vm(z1, . . . , zm)+

−
n∑

m=i+1

(−1)n+1−m

(n + 1 − m)!
θ (n+1−m)(z1 + . . . + zm) V i

m−1(z1, . . . , zm)

= θ (z1 + . . . + zn+1) Vn(z1, . . . , zi + zi+1, . . . , zn+1).

Next, recall the jth order differential operatorsDj in [21].

Definition 4.4 Define the jth order differential operatorsDj by

Dj :=
∑

i∈Zj
≥0

( |i|
i1, i2, . . . , ij

)

Q|i| ∂i , with ∂i := ∂ j

∂Qi1+1 ∂Qij+1 · · · ∂Qij+1
,

where the coefficient is a multinomial coefficient (in this section we pretend these
operators act on �∗, although formally there are only defined on the formal algebra
R = Q[Q1, Q2, . . .] freely generated by the variablesQ1 , Q2 , . . ., which admits a canonical
mapping to �∗).

These operators turn out to correspond to certain symmetric powers of the derivative
operators δzi . In particular, observe that the coefficient of z� in the case j = 1 below, is
given by g�,1(Fn). Hence, the operator D , requested in the previous section, is given by
D = D2/2.

Proposition 4.5 For all j ≥ 1 one has

〈DjW (z)〉q = j!
(
z1δ

j−1
z1 + . . . + znδ

j−1
zn

)
Fn(z).

Proof Observe that

DjQ� = j!
∑

i1<...<ij

(
�i1 + . . . + �ij − j
�i1 − 1, . . . , �ij − 1

)

Q�i1+...+�ij−j · · · Q̂li1 · · · Q̂lij · · · ,
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where the binomial coefficient vanishes whenever li = 0 for some i, and we wrote a hat
above an element to indicate that this element is omitted. Hence,

DjWλ(z) = j!
∑

i1<...<ij

(zi1 + . . . + zij )Wλ(zi1 + . . . + zij , . . . , ẑi1 , . . . , ẑij , . . .),

where . . . , ẑi1 , . . . , ẑij , . . . stands for the elements z1, . . . , zn omitting zi1 , . . . , zij . By sym-
metry of Fn and Proposition 4.3 the statement follows.

Now, by invoking Theorem 4.2, the following refinement of Theorem 1.5 follows. In
particular, we find a different expression for the basis elements hλ in [21], which equal
π (Qλ1 . . .Qλn ). Moreover, by construction, we deduce that the q-bracket of hλ is given by
ξλ+ (Fn), where λ+ = (λ1 + 1, λ2 + 1, . . . , λn + 1).
Define themapping∨ as the algebra homomorphismuniquely determinedbyQn 	→ �n,

where the commuting family of operators �k of [21] are given by

�n :=
n∑

i=0
(−1)i

(
n
i

)

∂ iDn−i .

We write (x)−n = x(x − 1) · · · (x − n + 1) for the falling factorial.

Theorem 4.6 Let ∂ = D1 andD2 be given byDefinition 4.4. The linearmappingπ : �∗ →
�∗ given by

π (f ) =
∑

r≥0

r∑

s=0
(−1)s

Qr
2 ∂2r−2sD s

2(f )
2r(� − r − 3

2 )r (r − s)! s!

whenever f is of weight � is a projection satisfying π (Q2�∗) = 0 and

π (f ) = Q−3/2+�
2 f ∨ Q3/2

2
( 32 )

−
� �!

. (33)

Furthermore,M := π (�∗) satisfies

(i) �∗ = M ⊕ (Q2), where (Q2) = Q2�∗;
(ii) 〈M〉q ⊆ M;
(iii) 〈(Q2)〉q ∩ M = {0};
(iv) M = H, whereH is the harmonic subspace of �∗ as in [21].

Proof Equation 33, as well as the fact that π is a projection, follows directly from [21,
Corollary 2]. In particular, as �2(Q3/2

2 ) = 0, it follows that π (Q2f ) = 0.
For the properties of M, observe that D and M , defined in the previous section, can

also be expressed as D2/2 and −∂2/2, respectively. Hence, the properties follow from
Theorem 4.2, and the fourth follows as the set {π (Qλ)}, where λ goes over all partitions
with all parts at least 3, is a basis for both spaces.

4.3 Second example: the Bloch–Okounkov algebra of higher level

To extend the result in the previous section to the Bloch–Okounkov algebras �∗(N ) of
level N (see (5) and Sect. 3.2), we should generalize the operators ∂ andD2.

Definition 4.7 Let R̂ = Q[Qk (a) | k ∈ Z≥0 , a ∈ Q] be the algebra in the formal variables
Qk (a) with canonical projection to

⋃
N∈Z �∗(N ). Given a ∈ Q

j , define the jth order
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differential operatorsDj on R̂ by

Dj :=
∑

i∈Zj
≥0

∑

a∈Qj

( |i|
i1, i2, . . . , ij

)

Q|i|(|a|) ∂i(a),

where

∂i(a) := ∂ j

∂Qi1+1(a1) · · · ∂Qin+1(an)
.

From now on, we pretend that these operators act on �∗(N ), by identifying �∗(N ) with a
quotient of R̂ via the obvious inclusion map. Note that restricted to �∗ the operators Dj
are the same as defined in Definition 4.4. Similarly, the operators Dj satisfy the following
property.

Proposition 4.8 For all j ≥ 1 and a ∈ Q
n one has

〈DjW (z + a)〉q = j!
(
(z1 + a1) δ

j−1
z1 + . . . + (zn + an) δ

j−1
zn

)
Fn(z + a).

Denote byM(N ) the algebra ofmodular forms of levelN . Then, Theorem 4.2 specializes
to the following result.

Theorem 4.9 Let N ≥ 1 and ∂ = D1 andD2 : �∗(N ) → �∗(N ) be given by Equation 4.7.
Let the projection π : �∗(N ) → �∗(N ) be given by

π (f ) =
∑

r≥0

r∑

s=0
(−1)s

Qr
2 ∂2r−2sD s

2(f )
2r(� − r − 3

2 )r (r − s)! s!
,

whenever f ∈ �∗(N ) is homogeneous of weight �. Then, the subspaceM(N ) := π (�∗(N ))
of �∗(N ) satisfies

(i) �∗(N ) = M(N ) ⊕ Q2 �∗(N );
(ii) 〈M(N )〉q ⊆ M(N );
(iii) 〈Q2 �∗(N )〉q ∩ M(N ) = {0}.

4.4 Third example: double moment functions

For the algebra of double moments functions (see Sect. 3.5) the n-point functions with
respect to the induced product � (see 29) are given by (28), i.e.

Gn(z,w) =
n∏

i=1

�(zi + wi)
�(zi)�(wi)

,

which is a Jacobi form. Hence, the operators δτ , δzi and δwi vanish acting on Gn, so thatD
can be taken to be the zero operator. We write δ for the derivation on T with respect to
the induced product (i.e. δ(f � g) = δ(f ) � g + f � δ(g) for all f, g ∈ T ) given by

δ(Tk,�) :=

⎧
⎪⎪⎨

⎪⎪⎩

k(� − 1)Tk−1,�−1 k ≥ 1, � ≥ 2,

− 1
2 k + � = 2,

0 else.

The notation δ is suggested by the fact that 〈δf 〉q = δτ 〈f 〉q for all f ∈ T .
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Theorem 4.10 Let the projection π : T → T be given by

π (f ) =
∑

r≥0

2r

r!

r
︷ ︸︸ ︷
T1,1 � · · · � T1,1 � δr(f ).

Then,M = π (T ) satisfies the following three properties:

(i) T = M ⊕ (T1,1), where (T1,1) = T1,1 � T ;
(ii) 〈M〉q = M;
(iii) 〈T1,1 � T 〉q ∩ M = {0}.

Proof The statement follows along the same lines asTheorem4.2, bymaking the following
observations:

• Analogous to ξ�(ϕ), the functions

∑

r≤|�|
(−1)r

∑

s≤r

er2 g
r−s
�,s (ϕ)

(r − s)!

are modular forms exactly if ϕ is a quasi-Jacobi form;
• 〈T1,1 � f 〉q = −2e2〈f 〉q for all f ∈ C

P ;
• The operator δ coincides with the operatorM ;
• By [22, Theorem 3.4.1], we have that 〈T 〉q = M̃, from which it follows that equality

holds in (4.10).

Remark In fact, for all f, g ∈ T one has

π (f � g) = π (f ) � π (g).

Hence, 〈πT 〉q is uniquely determined by 〈π (T2,0)〉q = 〈π (T1,1)〉q = 0 and

〈π (Tk,l)〉q =
⎧
⎨

⎩

ϑk−1Gl−k+2 l ≥ k

ϑ lGk−l k ≥ l + 2

for Tk,l ∈ T with k + l ≥ 4, where ϑ := Dτ − e2W denotes the Serre derivative on
the space of (quasi)modular forms (recall W is the operator multiplying a quasimodular
form by its weight) and Gk = (k−1)!

2(2π i)k ek . For any modular form f , the Serre derivative
ϑ f is modular as well. In particular, the Serre derivatives of Eisenstein series appearing
on the right of this equation are indeed modular forms. Moreover, the case distinction
according to the sign of l + 1 − k , should be compared to the Taylor coefficients of the
Jacobi form G1(z, w) in [24]. In fact, they are very similar (but here in level 1 and there
in level 2, and here with Serre derivatives and there with usual derivatives) to the ones
that appeared in [14] to prove the original assertion of Dijkgraaf from which the whole
Bloch–Okounkov story arose.

Acknowledgements
I am very grateful for the encouragement and feedback received from both my supervisors Gunther Cornelissen and Don
Zagier, especially taking into consideration the difficulties to meet each other in person. Also, I want to thank Georg
Oberdieck for introducing me to quasi-Jacobi forms, and Frits Beukers and Oleg German for some interesting remarks on
the Diophantine approximation problem for SL2(Z).



J-W. M. Ittersum Res Math Sci            (2023) 10:5 Page 45 of 45     5 

Funding Information
Open Access funding enabled and organized by Projekt DEAL.

Data availability statement
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Author details
1Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands, 2 Max-Planck-Institut für
Mathematik, Vivatsgasse 7, Bonn 53111, Germany.

Received: 1 March 2022 Accepted: 17 November 2022

References
1. Bloch, S., Okounkov, A.: The character of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000)
2. Boylan, H.: Jacobi forms, finite quadratic modules and Weil representations over number fields. Lecture Notes in

Mathematics, vol. 2130. Springer, Cham (2015)
3. Bringmann, K., Ono, K. and Wagner, I.: Eichler integrals of Eisenstein series as q-brackets of weighted t-hook functions

on partitions. arXiv:2009.07236, Sep (2020)
4. Bringmann, K.: Taylor coefficients of non-holomorphic Jacobi forms and applications. Res. Math. Sci. 5(1), 1–16 (2018)
5. Bringmann, K., Milas, A.: On the Fourier expansion of Bloch-Okounkov n-point function. J. Combin. Theory Ser. A 136,

201–219 (2015)
6. Chen, D., Möller, M., Zagier, D.: Quasimodularity and large genus limits of Siegel-Veech constants. J. Am. Math. Soc.

31(4), 1059–1163 (2018)
7. Cornelissen, G., de Jong, J.W.: The spectral length of a map between Riemannian manifolds. J. Noncommut. Geom.

6(4), 721–748 (2012)
8. Dabholkar, A., Murthy, S. and Zagier, D.: Quantumblack holes, wall crossing, andmockmodular forms. arXiv:1208.4074,

to appear in Cambridge Monogr. Math. Phys., 153 pp., (2014)
9. Eichler, M., Zagier, D.: The theory of Jacobi forms. Progress in Mathematics, vol. 55. Birkhäuser Boston Inc, Boston, MA

(1985)
10. Engel, P.: Hurwitz theory of elliptic orbifolds. I. Geom. Topol. 25(1), 229–274 (2021)
11. Eskin, A. and Okounkov, A.: Pillowcases and quasimodular forms. In: Algebraic geometry and number theory, volume

253 of Progr. Math., pp. 1–25. Birkhäuser Boston, Boston, MA, (2006)
12. Griffin, M.J., Jameson, M., Trebat-Leder, S.: On p-adic modular forms and the Bloch-Okounkov theorem. Res. Math. Sci.

3, 11 (2016)
13. Guilloux, A.: A brief remark on orbits of SL(2,mathbbZ) in the Euclidean plane. Ergodic Theory Dyn. Syst. 30(4),

1101–1109 (2010)
14. Kaneko, M. and Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: Themoduli space of curves

(Texel Island, 1994), Dijkgraaf, R., Faber, C., and van der Geer, G., eds., vol. 129 of Progr. Math., pp. 149–163. Birkhäuser
Boston, Boston, MA, (1995)

15. Kronecker, L.: Näherungsweise ganzzahlige Auflösung linearer Gleichungen. Monatsber. Königl. Preuß. Akad. Wiss.
Berlin, 1179-1193 and 1271-1299 (1884)

16. Kubert, D.S., Lang, S.: Modular units. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science], vol. 244. Springer-Verlag, New York-Berlin (1981)

17. Laurent, M.: On Kronecker’s density theorem, primitive points and orbits of matrices. Mosc. J. Comb. Number Theory
6(2–3), 191–207 (2016)

18. Laurent, M., Nogueira, A.: Approximation to points in the plane by SL(2,Z)-orbits. J. Lond. Math. Soc. 85(2), 409–429
(2012)

19. Libgober, A.: Elliptic genera, real algebraic varieties and quasi-Jacobi forms. In: Topology of stratified spaces, vol. 58 of
Math. Sci. Res. Inst. Publ., pp. 95–120. Cambridge Univ. Press, Cambridge, (2011)

20. Oberdieck, G., Pixton, A.: Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equa-
tions. Geom. Topol. 23(3), 1415–1489 (2019)

21. van Ittersum, J.-W.M.: When is the Bloch-Okounkov q-bracket modular? Ramanujan J. 52(3), 669–682 (2020)
22. van Ittersum, J.-W.M.: A symmetric Bloch-Okounkov theorem. Res. Math. Sci. 8(2), 19 (2021)
23. Weil, A.: Elliptic functions according to Eisenstein and Kronecker. Classics in Mathematics. Springer-Verlag, Berlin,

1999. Reprint of the 1976 original
24. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)
25. Zagier, D.: Partitions, quasimodular forms, and the Bloch-Okounkov theorem. Ramanujan J. 41(1–3), 345–368 (2016)
26. Zwegers, S.P.: Mock Theta Functions. PhD thesis, Universiteit Utrecht, 2002, https://dspace.library.uu.nl/handle/1874/

878

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2009.07236
http://arxiv.org/abs/1208.4074
https://dspace.library.uu.nl/handle/1874/878
https://dspace.library.uu.nl/handle/1874/878

	The Bloch–Okounkov theorem for congruence subgroups and Taylor coefficients of quasi-Jacobi forms
	Abstract
	1 Introduction
	1.1 The Bloch–Okounkov theorem for congruence subgroups
	1.2 When is the q-bracket modular?
	1.3 Quasi-Jacobi forms and their Taylor coefficients

	2 Quasi-Jacobi forms
	2.1 Strictly meromorphic Jacobi forms
	2.2 Poles of Jacobi forms
	2.3 An approximation lemma
	2.4 Quasi-Jacobi forms
	2.5 Action of the Jacobi Lie algebra by derivations
	2.6 The double slash operator
	2.7 Taylor coefficients

	3 Quasimodular algebras for congruence subgroups
	3.1 General set-up
	3.2 First application: the Bloch–Okounkov theorem of higher level
	3.3 Second application: hook-length moments of higher level
	3.4 Third application: moment functions of higher level
	3.5 Fourth application: double moment functions of higher level

	4 When is the q-bracket modular?
	4.1 Construction of functions with modular q-bracket
	4.2 First example: the Bloch–Okounkov algebra
	4.3 Second example: the Bloch–Okounkov algebra of higher level
	4.4 Third example: double moment functions

	References




